Dominant effect of a single amino acid mutation in the motor domain of myosin VI on hearing in mice.

IF 2.2 4区 农林科学 Q1 VETERINARY SCIENCES
Experimental Animals Pub Date : 2025-04-20 Epub Date: 2024-12-17 DOI:10.1538/expanim.24-0141
Yuta Seki, Shumpei P Yasuda, Xuehan Hou, Kayoko Tahara, Ornjira Prakhongcheep, Ai Takahashi, Yuki Miyasaka, Hirohide Takebayashi, Yoshiaki Kikkawa
{"title":"Dominant effect of a single amino acid mutation in the motor domain of myosin VI on hearing in mice.","authors":"Yuta Seki, Shumpei P Yasuda, Xuehan Hou, Kayoko Tahara, Ornjira Prakhongcheep, Ai Takahashi, Yuki Miyasaka, Hirohide Takebayashi, Yoshiaki Kikkawa","doi":"10.1538/expanim.24-0141","DOIUrl":null,"url":null,"abstract":"<p><p>An unconventional myosin, myosin VI gene (MYO6), contributes to recessive and dominant hearing loss in humans and mice. The Kumamoto shaker/waltzer (ksv) mouse is a model of deafness resulting from a splice-site mutation in Myo6. While ksv/ksv homozygous mice are deaf due to cochlear hair cell stereocilia fusion at the neonatal stage, the hearing phenotypes of ksv/+ heterozygous mice have been less clear. Due to this splicing error, most MYO6 protein expression is lost in ksv mice; however, MYO6 with a single amino acid mutation (p.E461K) remains expressed. In this study, we investigated the hearing phenotypes and effect of a p.E461K mutation in ksv/+ heterozygous mice. Hearing tests indicated that hearing loss in ksv/+ mice arises concurrently at both low and high frequencies. In the low-frequency region, stereocilia fusions were detected in the inner hair cells of ksv/+ mice. Expression analysis revealed abnormal MYO6 expression and localization, along with atypical expression of proteins in the basal region of the stereocilia, suggesting that these abnormalities may contribute to stereocilia fusion in ksv/+ mice. Conversely, although the expression patterns of MYO6 and stereociliary basal-region proteins appeared normal in the cochlear area corresponding to high-frequency sounds, stereocilia loss in the outer hair cells was observed in ksv/+ mice. These findings suggest that the ksv/+ mice exhibit distinct mechanisms underlying hearing loss across areas responsible for low- and high-frequency hearing, differing from those previously reported in heterozygous Myo6 mice with loss-of-function and missense mutant alleles.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"251-263"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1538/expanim.24-0141","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

An unconventional myosin, myosin VI gene (MYO6), contributes to recessive and dominant hearing loss in humans and mice. The Kumamoto shaker/waltzer (ksv) mouse is a model of deafness resulting from a splice-site mutation in Myo6. While ksv/ksv homozygous mice are deaf due to cochlear hair cell stereocilia fusion at the neonatal stage, the hearing phenotypes of ksv/+ heterozygous mice have been less clear. Due to this splicing error, most MYO6 protein expression is lost in ksv mice; however, MYO6 with a single amino acid mutation (p.E461K) remains expressed. In this study, we investigated the hearing phenotypes and effect of a p.E461K mutation in ksv/+ heterozygous mice. Hearing tests indicated that hearing loss in ksv/+ mice arises concurrently at both low and high frequencies. In the low-frequency region, stereocilia fusions were detected in the inner hair cells of ksv/+ mice. Expression analysis revealed abnormal MYO6 expression and localization, along with atypical expression of proteins in the basal region of the stereocilia, suggesting that these abnormalities may contribute to stereocilia fusion in ksv/+ mice. Conversely, although the expression patterns of MYO6 and stereociliary basal-region proteins appeared normal in the cochlear area corresponding to high-frequency sounds, stereocilia loss in the outer hair cells was observed in ksv/+ mice. These findings suggest that the ksv/+ mice exhibit distinct mechanisms underlying hearing loss across areas responsible for low- and high-frequency hearing, differing from those previously reported in heterozygous Myo6 mice with loss-of-function and missense mutant alleles.

肌球蛋白VI运动结构域单个氨基酸突变对小鼠听力的显性影响。
一个非常规的肌球蛋白,肌球蛋白VI基因(MYO6),有助于人类和小鼠的隐性和显性听力损失。熊本摇鼠/华尔兹(ksv)小鼠是由Myo6剪接位点突变引起的耳聋模型。虽然ksv/ksv纯合子小鼠在新生儿阶段由于耳蜗毛细胞立体纤毛融合而失聪,但ksv/+杂合子小鼠的听力表型不太清楚。由于这种剪接错误,大多数MYO6蛋白在ksv小鼠中表达缺失;然而,带有单个氨基酸突变(p.E461K)的MYO6仍然表达。在这项研究中,我们研究了在ksv/+杂合小鼠中p.E461K突变的听力表型和影响。听力测试表明,ksv/+小鼠的听力损失在低频率和高频率同时发生。在低频区,ksv/+小鼠的内毛细胞中检测到立体纤毛融合。表达分析显示MYO6的表达和定位异常,以及立体纤毛基底区蛋白的非典型表达,提示这些异常可能有助于ksv/+小鼠的立体纤毛融合。相反,尽管MYO6和立体纤毛基底区蛋白的表达模式在与高频声音相对应的耳蜗区域中表现正常,但在ksv/+小鼠中观察到外毛细胞的立体纤毛缺失。这些研究结果表明,ksv/+小鼠在负责低频和高频听力的区域表现出不同的听力损失机制,与先前报道的具有功能丧失和错感突变等位基因的杂合Myo6小鼠不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Animals
Experimental Animals 生物-动物学
CiteScore
2.80
自引率
4.20%
发文量
2
审稿时长
3 months
期刊介绍: The aim of this international journal is to accelerate progress in laboratory animal experimentation and disseminate relevant information in related areas through publication of peer reviewed Original papers and Review articles. The journal covers basic to applied biomedical research centering around use of experimental animals and also covers topics related to experimental animals such as technology, management, and animal welfare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信