{"title":"LADS: a powerful vaccine platform for cancer immunotherapy and prevention.","authors":"Jing Sun, Jing Wang, Xin Jiang, Jing Xia, Yue Han, Mianmian Chen, Jiali Xu, Simin Deng, Changyong Cheng, Houhui Song","doi":"10.1186/s12915-024-02086-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The intracellular bacterium Listeria monocytogenes is an attractive vector for cancer immunotherapy as it can effectively deliver tumor antigens to antigen-presenting cells, leading to a robust antitumor response.</p><p><strong>Results: </strong>In this study, we developed a novel vaccine platform called Listeria-based Live Attenuated Double Substitution (LADS), which involves introducing two amino acid substitutions (N478AV479A) into the virulence factor listeriolysin O (LLO). LADS is a safe vaccine platform, with an attenuation of nearly 7000-fold, while retaining complete immunogenicity due to the absence of deletion of any virulence factors. We developed two LADS-based vaccines, LADS-E7 and LADS-AH1, which deliver the human papillomavirus (HPV) type 16 E7 oncoprotein and murine colon carcinoma immunodominant antigen AH1, respectively. Treatment with LADS-E7 or LADS-AH1 significantly inhibited and regressed established tumors, while also dramatically increasing the populations of tumor-infiltrated antigen-specific CD8<sup>+</sup> T cells. RNA-sequencing analysis of tumor tissue samples revealed that LADS-E7 altered the expression of genes related to the immune response. Moreover, intratumoral injection of LADS-based vaccines induced strong antitumor responses, generating systemic antitumor responses to control distant tumor growth. Encouragingly, LADS-E7 or LADS-AH1 immunization effectively prevented tumor formation and growth.</p><p><strong>Conclusions: </strong>Our findings demonstrate that LADS-based vaccines represent a more powerful platform for the development of immunotherapeutic and preventive vaccines against cancers and infectious diseases.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"291"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02086-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The intracellular bacterium Listeria monocytogenes is an attractive vector for cancer immunotherapy as it can effectively deliver tumor antigens to antigen-presenting cells, leading to a robust antitumor response.
Results: In this study, we developed a novel vaccine platform called Listeria-based Live Attenuated Double Substitution (LADS), which involves introducing two amino acid substitutions (N478AV479A) into the virulence factor listeriolysin O (LLO). LADS is a safe vaccine platform, with an attenuation of nearly 7000-fold, while retaining complete immunogenicity due to the absence of deletion of any virulence factors. We developed two LADS-based vaccines, LADS-E7 and LADS-AH1, which deliver the human papillomavirus (HPV) type 16 E7 oncoprotein and murine colon carcinoma immunodominant antigen AH1, respectively. Treatment with LADS-E7 or LADS-AH1 significantly inhibited and regressed established tumors, while also dramatically increasing the populations of tumor-infiltrated antigen-specific CD8+ T cells. RNA-sequencing analysis of tumor tissue samples revealed that LADS-E7 altered the expression of genes related to the immune response. Moreover, intratumoral injection of LADS-based vaccines induced strong antitumor responses, generating systemic antitumor responses to control distant tumor growth. Encouragingly, LADS-E7 or LADS-AH1 immunization effectively prevented tumor formation and growth.
Conclusions: Our findings demonstrate that LADS-based vaccines represent a more powerful platform for the development of immunotherapeutic and preventive vaccines against cancers and infectious diseases.
期刊介绍:
BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.