Zhaoyang Huang, Xinyang Guo, Jie Qin, Lin Gao, Fen Ju, Chenguang Zhao, Liang Yu
{"title":"Accurate RNA velocity estimation based on multibatch network reveals complex lineage in batch scRNA-seq data.","authors":"Zhaoyang Huang, Xinyang Guo, Jie Qin, Lin Gao, Fen Ju, Chenguang Zhao, Liang Yu","doi":"10.1186/s12915-024-02085-8","DOIUrl":null,"url":null,"abstract":"<p><p>RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"290"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02085-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves upon VeloVI's velocity estimation by incorporating the graph structure into the encoder for more effective feature extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other methods in terms of metric performance.
期刊介绍:
BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.