Development of transient ischemic attack risk prediction model suitable for initializing a learning health system unit using electronic medical records.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Jian Wen, Tianmei Zhang, Shangrong Ye, Cheng Li, Ruobing Han, Ran Huang, Bairong Shen, Anjun Chen, Qinghua Li
{"title":"Development of transient ischemic attack risk prediction model suitable for initializing a learning health system unit using electronic medical records.","authors":"Jian Wen, Tianmei Zhang, Shangrong Ye, Cheng Li, Ruobing Han, Ran Huang, Bairong Shen, Anjun Chen, Qinghua Li","doi":"10.1186/s12911-024-02767-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients with transient ischemic attack (TIA) face a significantly increased risk of stroke. However, TIA screening and early detection rates are low, especially in developing countries. This study aims to develop an inclusive and practical TIA risk prediction model using machine learning (ML) that performs well in both hospital and resource-limited clinic settings. This model is essential for initiating the first ML-enabled learning health system (LHS) unit designed for routine and equitable TIA screening and early detection across broad populations.</p><p><strong>Methods: </strong>Employing a novel protocol, this study first standardized data from a hospital's electronic medical records (EMR) to construct inclusive TIA risk prediction ML models using a data-centric approach. Subsequently, a quantitative distribution of TIA risk factors was applied in feature engineering to reduce the number of variables for a practical ML model. This refined model initiated a TIA ML-LHS unit that is capable of continuously updating with new EMR data from hospitals and clinics. Additionally, the practical model underwent external validation using data from another hospital.</p><p><strong>Results: </strong>The inclusive 150-variable ML models, derived from all available EMR variables for TIA, achieved a recall of 0.868 and an accuracy of 0.886 in predicting TIA risk. Further feature engineering produced a practical XGBoost model with 20 variables, maintaining acceptable performance of 0.855 recall and 0.796 accuracy. The initialized TIA ML-LHS unit, based on the practical model, achieved performance metrics of 0.830 recall, 0.726 precision, 0.816 ROC-AUC, and 0.812 accuracy. The model also performed well in external validation, confirming its effectiveness with patient data from different clinical settings.</p><p><strong>Conclusions: </strong>This study developed the first inclusive and practical TIA XGBoost model from full hospital EHR and initiated the first TIA risk prediction ML-LHS unit. This TIA model, which requires only 20 variables, enables the ML-LHS to serve not only patients in hospitals but also those in resource-limited clinics. These results have significant implications for expanding risk-based TIA screening in community and rural clinics, thereby enhancing early detection of TIA among underserved populations and improving health equity. The novel protocol used in this study is also applicable for initiating ML-LHS units for various preventable diseases, providing a new system-level approach to responsible AI development and applications.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"24 1","pages":"392"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657208/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02767-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Patients with transient ischemic attack (TIA) face a significantly increased risk of stroke. However, TIA screening and early detection rates are low, especially in developing countries. This study aims to develop an inclusive and practical TIA risk prediction model using machine learning (ML) that performs well in both hospital and resource-limited clinic settings. This model is essential for initiating the first ML-enabled learning health system (LHS) unit designed for routine and equitable TIA screening and early detection across broad populations.

Methods: Employing a novel protocol, this study first standardized data from a hospital's electronic medical records (EMR) to construct inclusive TIA risk prediction ML models using a data-centric approach. Subsequently, a quantitative distribution of TIA risk factors was applied in feature engineering to reduce the number of variables for a practical ML model. This refined model initiated a TIA ML-LHS unit that is capable of continuously updating with new EMR data from hospitals and clinics. Additionally, the practical model underwent external validation using data from another hospital.

Results: The inclusive 150-variable ML models, derived from all available EMR variables for TIA, achieved a recall of 0.868 and an accuracy of 0.886 in predicting TIA risk. Further feature engineering produced a practical XGBoost model with 20 variables, maintaining acceptable performance of 0.855 recall and 0.796 accuracy. The initialized TIA ML-LHS unit, based on the practical model, achieved performance metrics of 0.830 recall, 0.726 precision, 0.816 ROC-AUC, and 0.812 accuracy. The model also performed well in external validation, confirming its effectiveness with patient data from different clinical settings.

Conclusions: This study developed the first inclusive and practical TIA XGBoost model from full hospital EHR and initiated the first TIA risk prediction ML-LHS unit. This TIA model, which requires only 20 variables, enables the ML-LHS to serve not only patients in hospitals but also those in resource-limited clinics. These results have significant implications for expanding risk-based TIA screening in community and rural clinics, thereby enhancing early detection of TIA among underserved populations and improving health equity. The novel protocol used in this study is also applicable for initiating ML-LHS units for various preventable diseases, providing a new system-level approach to responsible AI development and applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信