Are we cultivating the perfect storm for a human avian influenza pandemic?

IF 4.3 2区 生物学 Q1 BIOLOGY
Tomas Perez-Acle, Cesar Ravello, Mario Rosemblatt
{"title":"Are we cultivating the perfect storm for a human avian influenza pandemic?","authors":"Tomas Perez-Acle, Cesar Ravello, Mario Rosemblatt","doi":"10.1186/s40659-024-00570-6","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of highly pathogenic avian influenza (HPAI) A H5N1 virus in dairy cattle marks a troubling new chapter in the ongoing battle against zoonotic diseases. Since its initial detection in 1955, the H5N1 virus has primarily been associated with poultry, posing significant threats to both animal and human health. However, recent outbreaks in U.S. dairy herds across nine states have revealed an alarming expansion of the virus, with over 190 herds affected as of September 2024. This unprecedented spread in cattle has sparked intense concern among scientists and health officials, especially with reports indicating that up to 20% of dairy products may contain traces of the virus. The implications of the H5N1 virus establishing itself in cattle populations are profound. This potential endemic presence could transform dairy farms into reservoirs of the virus, facilitating its evolution and increasing the risk of human transmission. Mutations enhancing viral replication in mammals have already been identified, including the notorious PB2 E627K mutation linked to increased virulence. Moreover, the detection of the virus in the central nervous system of infected animals, including cats, underscores the broad tissue tropism and severe pathogenic potential of the H5N1 virus. Current containment efforts include stringent biosecurity measures and financial incentives for enhanced testing and personal protective equipment (PPE) for farmers. Yet, gaps in testing infrastructure and the resurgence of raw milk consumption pose significant challenges. The U.S. Department of Agriculture (USDA) and the Centers for Disease Control and Prevention (CDC) emphasize the critical need for comprehensive testing and pasteurization to mitigate the risk of human infection. As the scientific community races to adapt existing antiviral treatments and develop effective vaccines, the concept of a One Health approach becomes increasingly vital. This holistic strategy calls for coordinated actions across human, animal, and environmental health sectors to preemptively tackle emerging zoonotic threats. Strengthening surveillance, fostering international cooperation, and investing in research are essential steps to prevent the H5N1 virus from igniting the next global health crisis. The current avian influenza outbreak serves as a stark reminder of the delicate balance between human activities and viral evolution. Our collective ability to respond effectively and proactively will determine whether we can avert the perfect storm brewing on the horizon.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"96"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-024-00570-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of highly pathogenic avian influenza (HPAI) A H5N1 virus in dairy cattle marks a troubling new chapter in the ongoing battle against zoonotic diseases. Since its initial detection in 1955, the H5N1 virus has primarily been associated with poultry, posing significant threats to both animal and human health. However, recent outbreaks in U.S. dairy herds across nine states have revealed an alarming expansion of the virus, with over 190 herds affected as of September 2024. This unprecedented spread in cattle has sparked intense concern among scientists and health officials, especially with reports indicating that up to 20% of dairy products may contain traces of the virus. The implications of the H5N1 virus establishing itself in cattle populations are profound. This potential endemic presence could transform dairy farms into reservoirs of the virus, facilitating its evolution and increasing the risk of human transmission. Mutations enhancing viral replication in mammals have already been identified, including the notorious PB2 E627K mutation linked to increased virulence. Moreover, the detection of the virus in the central nervous system of infected animals, including cats, underscores the broad tissue tropism and severe pathogenic potential of the H5N1 virus. Current containment efforts include stringent biosecurity measures and financial incentives for enhanced testing and personal protective equipment (PPE) for farmers. Yet, gaps in testing infrastructure and the resurgence of raw milk consumption pose significant challenges. The U.S. Department of Agriculture (USDA) and the Centers for Disease Control and Prevention (CDC) emphasize the critical need for comprehensive testing and pasteurization to mitigate the risk of human infection. As the scientific community races to adapt existing antiviral treatments and develop effective vaccines, the concept of a One Health approach becomes increasingly vital. This holistic strategy calls for coordinated actions across human, animal, and environmental health sectors to preemptively tackle emerging zoonotic threats. Strengthening surveillance, fostering international cooperation, and investing in research are essential steps to prevent the H5N1 virus from igniting the next global health crisis. The current avian influenza outbreak serves as a stark reminder of the delicate balance between human activities and viral evolution. Our collective ability to respond effectively and proactively will determine whether we can avert the perfect storm brewing on the horizon.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信