Sulaiman Salim Al Mashrafi, Laleh Tafakori, Mali Abdollahian
{"title":"Predicting maternal risk level using machine learning models.","authors":"Sulaiman Salim Al Mashrafi, Laleh Tafakori, Mali Abdollahian","doi":"10.1186/s12884-024-07030-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Maternal morbidity and mortality remain critical health concerns globally. As a result, reducing the maternal mortality ratio (MMR) is part of goal 3 in the global sustainable development goals (SDGs), and previously, it was an important indicator in the Millennium Development Goals (MDGs). Therefore, identifying high-risk groups during pregnancy is crucial for decision-makers and medical practitioners to mitigate mortality and morbidity. However, the availability of accurate predictive models for maternal mortality and maternal health risks is challenging. Compared with traditional predictive models, machine learning algorithms have emerged as promising predictive modelling methods providing accurate predictive models.</p><p><strong>Methods: </strong>This work aims to explore the potential of machine learning (ML) algorithms in maternal risk level prediction using a nationwide maternal mortality dataset from Oman for the first time. A total of 402 maternal deaths from 1991 to 2023 in Oman were included in this study. We utilised principal component analysis (PCA) in the ML algorithms and compared them to the results of model performance without PCA. We employed and compared ten ML algorithms, including decision tree (DT), random forest (RF), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Extreme Gradient Boosting (xgboost), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression (LR), Support Vector Machine (SVM) and Artificial Neural Network (ANN). Different metrics, including, accuracy, sensitivity, precision, and the F1- score, were utilised to assess Model performance.</p><p><strong>Results: </strong>The results indicated that the RF model outperformed the other methods in predicting the risk level (low or high) with an accuracy of 75.2%, precision of 85.7% and F1- score of 73% after PCA was applied.</p><p><strong>Conclusions: </strong>We applied several machine learning models to predict maternal risk levels for the first time using real data from Oman. RF outperformed the other algorithms in this classification problem. A reliable estimate of maternal risk level would facilitate intervention plans for medical practitioners to reduce maternal death.</p>","PeriodicalId":9033,"journal":{"name":"BMC Pregnancy and Childbirth","volume":"24 1","pages":"820"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pregnancy and Childbirth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12884-024-07030-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Maternal morbidity and mortality remain critical health concerns globally. As a result, reducing the maternal mortality ratio (MMR) is part of goal 3 in the global sustainable development goals (SDGs), and previously, it was an important indicator in the Millennium Development Goals (MDGs). Therefore, identifying high-risk groups during pregnancy is crucial for decision-makers and medical practitioners to mitigate mortality and morbidity. However, the availability of accurate predictive models for maternal mortality and maternal health risks is challenging. Compared with traditional predictive models, machine learning algorithms have emerged as promising predictive modelling methods providing accurate predictive models.
Methods: This work aims to explore the potential of machine learning (ML) algorithms in maternal risk level prediction using a nationwide maternal mortality dataset from Oman for the first time. A total of 402 maternal deaths from 1991 to 2023 in Oman were included in this study. We utilised principal component analysis (PCA) in the ML algorithms and compared them to the results of model performance without PCA. We employed and compared ten ML algorithms, including decision tree (DT), random forest (RF), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Extreme Gradient Boosting (xgboost), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression (LR), Support Vector Machine (SVM) and Artificial Neural Network (ANN). Different metrics, including, accuracy, sensitivity, precision, and the F1- score, were utilised to assess Model performance.
Results: The results indicated that the RF model outperformed the other methods in predicting the risk level (low or high) with an accuracy of 75.2%, precision of 85.7% and F1- score of 73% after PCA was applied.
Conclusions: We applied several machine learning models to predict maternal risk levels for the first time using real data from Oman. RF outperformed the other algorithms in this classification problem. A reliable estimate of maternal risk level would facilitate intervention plans for medical practitioners to reduce maternal death.
期刊介绍:
BMC Pregnancy & Childbirth is an open access, peer-reviewed journal that considers articles on all aspects of pregnancy and childbirth. The journal welcomes submissions on the biomedical aspects of pregnancy, breastfeeding, labor, maternal health, maternity care, trends and sociological aspects of pregnancy and childbirth.