Asma S Alonazi, Sara Almodawah, Rana Aldigi, Anfal Bin Dayel, Maha Alamin, Ahmad R Almotairi, Maha F El-Tohamy, Hana Alharbi, Rehab Ali, Tahani K Alshammari, Nouf M Alrasheed
{"title":"Potential cardioprotective effect of paroxetine against ventricular remodeling in an animal model of myocardial infarction: a comparative study.","authors":"Asma S Alonazi, Sara Almodawah, Rana Aldigi, Anfal Bin Dayel, Maha Alamin, Ahmad R Almotairi, Maha F El-Tohamy, Hana Alharbi, Rehab Ali, Tahani K Alshammari, Nouf M Alrasheed","doi":"10.1186/s40360-024-00824-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Post-myocardial infarction (MI) remodeling involves various structural and functional changes, such as inflammation and fibrosis. Upregulation of G protein-coupled receptor kinase 2 (GRK2) is linked to the progression of cardiovascular diseases, including myocardial infarction. The inhibitory effects of paroxetine on GRK2 are recognized, yet its protective effect on post-MI remodeling has not been elucidated. Here, we investigated the cardioprotective effect of paroxetine in an animal model of MI, focusing on post-MI cardiac remodeling and comparing its effect to a β-blocker and an angiotensin receptor antagonist.</p><p><strong>Methods: </strong>Albino Wistar rats were divided into five groups (control; untreated MI; and MI pre-treated with either paroxetine, metoprolol, or irbesartan). MI was induced using isoproterenol (100 mg.kg<sup>-1</sup>) on days 16 and 17. Cardioprotective effects were determined by assessing markers of cardiac injury, histopathology, inflammation, oxidative stress, and fibrosis. Statistical analysis performed using a one-way analysis of variance, followed by an appropriate post hoc test, the differences between the groups were considered significant when the (P < 0.05).</p><p><strong>Results: </strong>Paroxetine significantly attenuated cardiac injury biomarkers including serum Tn-I and CK-MB levels. In terms of cardiac remodeling, paroxetine significantly reduced the relative HW/BW index and the plasms FGF23 level. Furthermore, it modulated markers of fibrosis, inflammation, and oxidative stress.</p><p><strong>Conclusion: </strong>The current findings suggest that pre-treatment with paroxetine may exert a beneficial effect that protects against post-MI remodeling, including modulating fibrotic, inflammatory, and angiogenesis-related factors. Therefore, the current findings show the promising role of paroxetine as a cardioprotective that attenuates post-MI remodeling processes.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"99"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-024-00824-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Post-myocardial infarction (MI) remodeling involves various structural and functional changes, such as inflammation and fibrosis. Upregulation of G protein-coupled receptor kinase 2 (GRK2) is linked to the progression of cardiovascular diseases, including myocardial infarction. The inhibitory effects of paroxetine on GRK2 are recognized, yet its protective effect on post-MI remodeling has not been elucidated. Here, we investigated the cardioprotective effect of paroxetine in an animal model of MI, focusing on post-MI cardiac remodeling and comparing its effect to a β-blocker and an angiotensin receptor antagonist.
Methods: Albino Wistar rats were divided into five groups (control; untreated MI; and MI pre-treated with either paroxetine, metoprolol, or irbesartan). MI was induced using isoproterenol (100 mg.kg-1) on days 16 and 17. Cardioprotective effects were determined by assessing markers of cardiac injury, histopathology, inflammation, oxidative stress, and fibrosis. Statistical analysis performed using a one-way analysis of variance, followed by an appropriate post hoc test, the differences between the groups were considered significant when the (P < 0.05).
Results: Paroxetine significantly attenuated cardiac injury biomarkers including serum Tn-I and CK-MB levels. In terms of cardiac remodeling, paroxetine significantly reduced the relative HW/BW index and the plasms FGF23 level. Furthermore, it modulated markers of fibrosis, inflammation, and oxidative stress.
Conclusion: The current findings suggest that pre-treatment with paroxetine may exert a beneficial effect that protects against post-MI remodeling, including modulating fibrotic, inflammatory, and angiogenesis-related factors. Therefore, the current findings show the promising role of paroxetine as a cardioprotective that attenuates post-MI remodeling processes.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.