{"title":"Oral probiotic extracellular vesicle therapy mitigates Influenza A Virus infection via blunting IL-17 signaling.","authors":"Hongxia Zhou, Wenbo Huang, Jieting Li, Peier Chen, Lihan Shen, Wenjing Huang, Kailin Mai, Heyan Zou, Xueqin Shi, Yunceng Weng, Yuhua Liu, Zifeng Yang, Caiwen Ou","doi":"10.1016/j.bioactmat.2024.11.016","DOIUrl":null,"url":null,"abstract":"<p><p>The influenza A virus (IAV) damages intestinal mucosal tissues beyond the respiratory tract. Probiotics play a crucial role in maintaining the balance and stability of the intestinal microecosystem. Extracellular vesicles (EVs) derived from probiotics have emerged as potential mediators of host immune response and anti-inflammatory effect. However, the specific anti-inflammatory effects and underlying mechanisms of probiotics-derived EVs on IAV remain unclear. In the present study, we investigated the therapeutic efficacy of <i>Lactobacillus reuteri</i> EHA2-derived EVs (LrEVs) in a mouse model of IAV infection. Oral LrEVs were distributed in the liver, lungs, and gastrointestinal tract. In mice infected with IAV, oral LrEVs administration alleviated IAV-induced damages in the lungs and intestines, modified the microbiota compositions, and increased the levels of short-chain fatty acids in those organs. Mechanistically, LrEVs exerted their protective effects against IAV infection by blunting the pro-inflammatory IL-17 signaling. Furthermore, FISH analysis detected miR-4239, one of the most abundant miRNAs in LrEVs, in both lung and intestinal tissues. We confirmed that miR-4239 directly targets <i>IL-17a</i>. Our findings paved the ground for future application of LrEVs in influenza treatment and offered new mechanistic insights regarding the anti-inflammatory role of miR-4239.</p>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"45 ","pages":"401-416"},"PeriodicalIF":18.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652895/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.bioactmat.2024.11.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The influenza A virus (IAV) damages intestinal mucosal tissues beyond the respiratory tract. Probiotics play a crucial role in maintaining the balance and stability of the intestinal microecosystem. Extracellular vesicles (EVs) derived from probiotics have emerged as potential mediators of host immune response and anti-inflammatory effect. However, the specific anti-inflammatory effects and underlying mechanisms of probiotics-derived EVs on IAV remain unclear. In the present study, we investigated the therapeutic efficacy of Lactobacillus reuteri EHA2-derived EVs (LrEVs) in a mouse model of IAV infection. Oral LrEVs were distributed in the liver, lungs, and gastrointestinal tract. In mice infected with IAV, oral LrEVs administration alleviated IAV-induced damages in the lungs and intestines, modified the microbiota compositions, and increased the levels of short-chain fatty acids in those organs. Mechanistically, LrEVs exerted their protective effects against IAV infection by blunting the pro-inflammatory IL-17 signaling. Furthermore, FISH analysis detected miR-4239, one of the most abundant miRNAs in LrEVs, in both lung and intestinal tissues. We confirmed that miR-4239 directly targets IL-17a. Our findings paved the ground for future application of LrEVs in influenza treatment and offered new mechanistic insights regarding the anti-inflammatory role of miR-4239.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.