Sheetal Das, Janarthanan Krishnamoorthy, Rajiv K Kar
{"title":"Estimating the structural and spatial variables of allantoinase enzyme critical for protein adsorption.","authors":"Sheetal Das, Janarthanan Krishnamoorthy, Rajiv K Kar","doi":"10.1016/j.bbrc.2024.151161","DOIUrl":null,"url":null,"abstract":"<p><p>Designing enzyme-based sensors necessitates a comprehensive exploration of macromolecular properties. Integrating enzymes with a suitable transducer involves immobilizing them onto a surface, facilitated through adsorption or entrapment techniques. Allantoin, a stable biomarkers metabolite, holds promise for detecting oxidative stress-related complications through its enzyme. In this study, we examined allantoinase from various taxa, with bacterial origin comprising over 70 % of the dataset. Crucial residues such as Asp, His, and Gly in the active binding site and associated hydrophobic area play a critical role in maintaining binding specificity and sensitivity. In this work, we utilized bioinformatics tools to analyze properties such as pI, solubility index, amino acid hydropathy, stability, disordered regions, solvent-accessible surface area, and hydrodynamic parameters. The stability of allantoinase is assessed through surface Cys residues, hydrophobicity, and thermostability. Furthermore, the compactness and spherical geometry of the enzyme, which are crucial for protein adsorption are evaluated through parameters like spatial conformation, asphericity, and hydrodynamic radius distribution. Among the dataset, bacterial allantoinase demonstrates significant adaptability to environmental changes, as indicated by solvent-accessible surface area and instability index. This study highlights the importance of macromolecular properties underscoring their significance in optimizing, calibrating, and ensuring the stability of enzyme-based sensor design.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"743 ","pages":"151161"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151161","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Designing enzyme-based sensors necessitates a comprehensive exploration of macromolecular properties. Integrating enzymes with a suitable transducer involves immobilizing them onto a surface, facilitated through adsorption or entrapment techniques. Allantoin, a stable biomarkers metabolite, holds promise for detecting oxidative stress-related complications through its enzyme. In this study, we examined allantoinase from various taxa, with bacterial origin comprising over 70 % of the dataset. Crucial residues such as Asp, His, and Gly in the active binding site and associated hydrophobic area play a critical role in maintaining binding specificity and sensitivity. In this work, we utilized bioinformatics tools to analyze properties such as pI, solubility index, amino acid hydropathy, stability, disordered regions, solvent-accessible surface area, and hydrodynamic parameters. The stability of allantoinase is assessed through surface Cys residues, hydrophobicity, and thermostability. Furthermore, the compactness and spherical geometry of the enzyme, which are crucial for protein adsorption are evaluated through parameters like spatial conformation, asphericity, and hydrodynamic radius distribution. Among the dataset, bacterial allantoinase demonstrates significant adaptability to environmental changes, as indicated by solvent-accessible surface area and instability index. This study highlights the importance of macromolecular properties underscoring their significance in optimizing, calibrating, and ensuring the stability of enzyme-based sensor design.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics