Cui Ren, Zhiyong Shi, Xiaowen Zhang, Xueer Yu, Yang Gao, Zhi Qi, Yu Chen, Yong Wang
{"title":"DNA-mediated self-assembly oxidative damage amplifier combined with copper and MTH1 inhibitor for cancer therapy.","authors":"Cui Ren, Zhiyong Shi, Xiaowen Zhang, Xueer Yu, Yang Gao, Zhi Qi, Yu Chen, Yong Wang","doi":"10.1016/j.bioactmat.2024.11.009","DOIUrl":null,"url":null,"abstract":"<p><p>Chemo-dynamic therapy (CDT) has a great potential in tumor extirpation. It entails producing hypertoxic reactive oxygen species (ROS) that damage the DNA of tumor cells and other biomacromolecules. However, the efficiency of CDT is severely hampered by the massive presence of glutathione (GSH) in tumor cells and the interference of ROS defense systems, such as Mutt homolog 1 (MTH1) protein sanitizes ROS-oxidized nucleotide pools. In this research, DNA-mediated self-assembly nanoparticles (HTCG@TA NPs) were engineered with high-performance amplified oxidative damage and gene therapy effect for synergistic anti-tumor treatment. Cu<sup>2+</sup> was converted into Cu <sup>+</sup> by redox reactions to deplete GSH while H<sub>2</sub>O<sub>2</sub> was catalyzed to generate hydroxyl radicals (·OH). As a result, the ROS level was evidently improved. Moreover, controllable-released TH588 prevented MTH1-mediated DNA repairing, thus aggravated oxidative damage to tumor cells. Meanwhile, the released functional nucleic acid G3139 downregulated the expression of Bcl-2, and accelerated the apoptosis of tumor cells. In conclusion, the HTCG@TA demonstrated significant effect in oxidative damage amplification and tumor inhibition both <i>in vitro</i> and <i>in vivo</i>, which has provided a new outlook for the clinical application of chemo-dynamic tumor treatment and synergistic gene therapy with self-delivery nanoplatforms.</p>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"45 ","pages":"434-445"},"PeriodicalIF":18.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.bioactmat.2024.11.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chemo-dynamic therapy (CDT) has a great potential in tumor extirpation. It entails producing hypertoxic reactive oxygen species (ROS) that damage the DNA of tumor cells and other biomacromolecules. However, the efficiency of CDT is severely hampered by the massive presence of glutathione (GSH) in tumor cells and the interference of ROS defense systems, such as Mutt homolog 1 (MTH1) protein sanitizes ROS-oxidized nucleotide pools. In this research, DNA-mediated self-assembly nanoparticles (HTCG@TA NPs) were engineered with high-performance amplified oxidative damage and gene therapy effect for synergistic anti-tumor treatment. Cu2+ was converted into Cu + by redox reactions to deplete GSH while H2O2 was catalyzed to generate hydroxyl radicals (·OH). As a result, the ROS level was evidently improved. Moreover, controllable-released TH588 prevented MTH1-mediated DNA repairing, thus aggravated oxidative damage to tumor cells. Meanwhile, the released functional nucleic acid G3139 downregulated the expression of Bcl-2, and accelerated the apoptosis of tumor cells. In conclusion, the HTCG@TA demonstrated significant effect in oxidative damage amplification and tumor inhibition both in vitro and in vivo, which has provided a new outlook for the clinical application of chemo-dynamic tumor treatment and synergistic gene therapy with self-delivery nanoplatforms.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.