Effect of Arsenic Exposure on AS3MT Protein Levels in Serum of Type 2 Diabetic Patients Compared to Non-diabetics.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biological Trace Element Research Pub Date : 2025-07-01 Epub Date: 2024-12-19 DOI:10.1007/s12011-024-04448-2
Saima Shokat, Riffat Iqbal, Muhammad Ahmed Ali, Atif Yaqub, Shaista Aslam, Samreen Riaz
{"title":"Effect of Arsenic Exposure on AS3MT Protein Levels in Serum of Type 2 Diabetic Patients Compared to Non-diabetics.","authors":"Saima Shokat, Riffat Iqbal, Muhammad Ahmed Ali, Atif Yaqub, Shaista Aslam, Samreen Riaz","doi":"10.1007/s12011-024-04448-2","DOIUrl":null,"url":null,"abstract":"<p><p>This research explores the impact of arsenic exposure on serum protein profiles in type 2 diabetes patients, with an emphasis on the AS3MT protein as a biomarker. Utilizing Bradford protein assay, SDS-PAGE, HPLC, and mass spectrometry, we quantified and analyzed variations in serum protein levels, focusing on differences between control groups (82.94 ± 8.03 µg/mL) and diabetic patients (96.95 ± 5.02 µg/mL) of high arsenic exposed in areas Kasur and Lahore, Punjab, Pakistan. The study revealed a significant increase in total serum proteins and specifically identified elevated levels of AS3MT in the diabetic group compared to controls. By using 15% gel, proteins were separated, and bands were visible at 42KD. Further investigations using HPLC provided a detailed chromatographic profile of AS3MT, isolating this protein effectively and displaying its heightened abundance through a marked peak within the sample chromatograms. Additionally, intact mass and tryptic digestion profiles analyzed by mass spectrometry (molecular weight of 41,747.79 D) further corroborated the identity and modification of AS3MT in the context of arsenic exposure. ELISA was used for the quantification of AS3MT protein concentration, and a 260% increase was confirmed in the diabetic group exposed to arsenic. These findings suggested that arsenic exposure significantly alters AS3MT protein and serum protein levels in diabetic patients, supporting the hypothesis that AS3MT can serve as a biomarker for arsenic-induced diabetic conditions.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"3640-3657"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04448-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores the impact of arsenic exposure on serum protein profiles in type 2 diabetes patients, with an emphasis on the AS3MT protein as a biomarker. Utilizing Bradford protein assay, SDS-PAGE, HPLC, and mass spectrometry, we quantified and analyzed variations in serum protein levels, focusing on differences between control groups (82.94 ± 8.03 µg/mL) and diabetic patients (96.95 ± 5.02 µg/mL) of high arsenic exposed in areas Kasur and Lahore, Punjab, Pakistan. The study revealed a significant increase in total serum proteins and specifically identified elevated levels of AS3MT in the diabetic group compared to controls. By using 15% gel, proteins were separated, and bands were visible at 42KD. Further investigations using HPLC provided a detailed chromatographic profile of AS3MT, isolating this protein effectively and displaying its heightened abundance through a marked peak within the sample chromatograms. Additionally, intact mass and tryptic digestion profiles analyzed by mass spectrometry (molecular weight of 41,747.79 D) further corroborated the identity and modification of AS3MT in the context of arsenic exposure. ELISA was used for the quantification of AS3MT protein concentration, and a 260% increase was confirmed in the diabetic group exposed to arsenic. These findings suggested that arsenic exposure significantly alters AS3MT protein and serum protein levels in diabetic patients, supporting the hypothesis that AS3MT can serve as a biomarker for arsenic-induced diabetic conditions.

砷暴露对2型糖尿病患者血清AS3MT蛋白水平的影响
本研究探讨砷暴露对2型糖尿病患者血清蛋白谱的影响,重点关注AS3MT蛋白作为生物标志物。利用Bradford蛋白分析、SDS-PAGE、HPLC和质谱分析,我们定量分析了巴基斯坦旁遮普Kasur和Lahore地区高砷暴露的对照组(82.94±8.03µg/mL)和糖尿病患者(96.95±5.02µg/mL)血清蛋白水平的差异。该研究显示,与对照组相比,糖尿病组血清总蛋白显著增加,并特别确定AS3MT水平升高。用15%凝胶分离蛋白,在42KD处可见条带。进一步的HPLC研究提供了AS3MT的详细色谱图谱,有效地分离出该蛋白,并在样品色谱图中通过一个显著的峰显示其丰富度。此外,通过质谱分析的完整质量和胰蛋白酶消化谱(分子量为41,747.79 D)进一步证实了AS3MT在砷暴露背景下的身份和修饰。ELISA法定量检测AS3MT蛋白浓度,结果证实糖尿病组砷暴露组AS3MT蛋白浓度升高260%。这些发现表明,砷暴露显著改变了糖尿病患者的AS3MT蛋白和血清蛋白水平,支持了AS3MT可以作为砷诱导糖尿病疾病的生物标志物的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信