Construction and Expression of Fc-FGF21 by Different Expression Systems and Comparison of Their Similarity and Difference with Efruxifermin by In Vitro and In Vivo Studies.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xujia Wang, Qin Meng, Aijuan Jia, Yuehua Zhou, Dandan Song, Shaokang Ma, Wei Li, Zhuobing Zhang, Christopher Goldring, Hui Feng, Mu Wang
{"title":"Construction and Expression of Fc-FGF21 by Different Expression Systems and Comparison of Their Similarity and Difference with Efruxifermin by In Vitro and In Vivo Studies.","authors":"Xujia Wang, Qin Meng, Aijuan Jia, Yuehua Zhou, Dandan Song, Shaokang Ma, Wei Li, Zhuobing Zhang, Christopher Goldring, Hui Feng, Mu Wang","doi":"10.1007/s12010-024-05107-x","DOIUrl":null,"url":null,"abstract":"<p><p>Non-alcoholic steatohepatitis (NASH) is a potential serious disease, which almost has no available medicine for effective treatment today. Efruxifermin is a bivalent Fc-FGF21 candidate drug developed by Akero Therapeutics that has shown promising results in preclinical and clinical trials for NASH and may be approved in future. However, it is produced by Escherichia coli (E. coli) expressing system, which has no glycosylation modifications and is hard to purify for inclusion body. Suspension mammalian cell expression systems, human embryonic kidney 293 (HEK293), and Chinese hamster ovary (CHO) are good choice for protein expression of biopharmaceutical use. In this report, the objective was to produce Fc-FGF21 by mammalian cell expression systems, which enabled necessary glycosylation modifications to occur on the Fc-FGF21 protein and was relatively easy for future large-scale production. We observed that the target protein Fc-FGF21 could be easily degraded in CHO system, such as CHOK1SV or CHOZN, and it was hard to purify, whereas it was more stable in the HEK293 expressing system. Then, similarity between Fc-FGF21 from E. coli and Fc-FGF21 from HEK293 was focused by in vitro and in vivo studies, and we observed no significant difference between the proteins expressed from the two different expressing systems, indicating that a biosimilar of Efruxifermin has been developed successfully. Proteomics analysis from in vivo study samples further identified some potential biomarkers or FGF21 related signaling pathways. Taken together, this study demonstrates a good example of how to develop and validate a biosimilar for therapeutic purposes. In future, more efforts, such as mutation to FGF21 or linking FGF21 with effective antibody to form dual targets, could be done to obtain more effective FGF21 analogs.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05107-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-alcoholic steatohepatitis (NASH) is a potential serious disease, which almost has no available medicine for effective treatment today. Efruxifermin is a bivalent Fc-FGF21 candidate drug developed by Akero Therapeutics that has shown promising results in preclinical and clinical trials for NASH and may be approved in future. However, it is produced by Escherichia coli (E. coli) expressing system, which has no glycosylation modifications and is hard to purify for inclusion body. Suspension mammalian cell expression systems, human embryonic kidney 293 (HEK293), and Chinese hamster ovary (CHO) are good choice for protein expression of biopharmaceutical use. In this report, the objective was to produce Fc-FGF21 by mammalian cell expression systems, which enabled necessary glycosylation modifications to occur on the Fc-FGF21 protein and was relatively easy for future large-scale production. We observed that the target protein Fc-FGF21 could be easily degraded in CHO system, such as CHOK1SV or CHOZN, and it was hard to purify, whereas it was more stable in the HEK293 expressing system. Then, similarity between Fc-FGF21 from E. coli and Fc-FGF21 from HEK293 was focused by in vitro and in vivo studies, and we observed no significant difference between the proteins expressed from the two different expressing systems, indicating that a biosimilar of Efruxifermin has been developed successfully. Proteomics analysis from in vivo study samples further identified some potential biomarkers or FGF21 related signaling pathways. Taken together, this study demonstrates a good example of how to develop and validate a biosimilar for therapeutic purposes. In future, more efforts, such as mutation to FGF21 or linking FGF21 with effective antibody to form dual targets, could be done to obtain more effective FGF21 analogs.

不同表达系统Fc-FGF21的构建与表达及其与Efruxifermin的异同比较
非酒精性脂肪性肝炎(NASH)是一种潜在的严重疾病,目前几乎没有有效的药物治疗。Efruxifermin是由Akero Therapeutics开发的一种二价Fc-FGF21候选药物,在NASH的临床前和临床试验中显示出有希望的结果,可能在未来获得批准。然而,它是由大肠杆菌(e.c oli)表达系统产生的,没有糖基化修饰,难以对包涵体进行纯化。悬浮式哺乳动物细胞表达系统、人胚胎肾293 (HEK293)和中国仓鼠卵巢(CHO)是生物制药用蛋白表达的良好选择。在本报告中,目标是通过哺乳动物细胞表达系统生产Fc-FGF21,这使得Fc-FGF21蛋白上发生必要的糖基化修饰,并且相对容易在未来大规模生产。我们观察到靶蛋白Fc-FGF21在CHO系统(如CHOK1SV或CHOZN)中容易降解,且难以纯化,而在HEK293表达系统中更稳定。然后,通过体外和体内研究,重点分析了大肠杆菌中Fc-FGF21与HEK293中Fc-FGF21的相似性,两种不同表达系统中表达的蛋白无显著差异,表明成功开发了Efruxifermin的生物类似物。体内研究样本的蛋白质组学分析进一步确定了一些潜在的生物标志物或FGF21相关的信号通路。总之,这项研究展示了如何开发和验证用于治疗目的的生物仿制药的一个很好的例子。未来,可以通过对FGF21进行突变或将FGF21与有效抗体连接形成双靶点等方法获得更有效的FGF21类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信