{"title":"Leveraging Lactobacillus plantarum probiotics to mitigate diarrhea and Salmonella infections in broiler chickens.","authors":"Seyed Mehrdad Mirsalami, Mahsa Mirsalami","doi":"10.1186/s13568-024-01792-3","DOIUrl":null,"url":null,"abstract":"<p><p>Anaerobic bacteria, such as Lactobacillus plantarum (LP), are known to play a significant role in maintaining gut health and protecting against enteric pathogens in animals. The present study aimed to develop a safe, affordable, and eco-friendly method for producing LP-based probiotics and evaluate their efficacy in mitigating Salmonella-induced diarrhea in broiler chickens. The study employed three different culture media (MRS, TSB, and Baird Parker) to grow LP, which was then dried using a spray-drying technique to produce a stable probiotic formulation. When administered to broiler chickens, the LP probiotic derived from the MRS medium significantly improved body weight gain (4.147-fold increase over 4 weeks) compared to the other two culture conditions. Importantly, the LP probiotic treatment could substantially reduce the diarrhea index in broilers, with up to an 86.45% improvement in Salmonella-induced enteric infections. The beneficial effects were attributed to the ability of LP to modulate the gut microbiome, enhance the integrity of the intestinal mucosa, and mitigate the pathogenic effects of Salmonella. These findings demonstrate the potential of anaerobic Lactobacillus plantarum as a safe and effective probiotic intervention for controlling enteric diseases and improving production outcomes in poultry farming. The developed method provides a sustainable approach to harness the beneficial properties of this anaerobic bacterium for animal health and welfare.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"137"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01792-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anaerobic bacteria, such as Lactobacillus plantarum (LP), are known to play a significant role in maintaining gut health and protecting against enteric pathogens in animals. The present study aimed to develop a safe, affordable, and eco-friendly method for producing LP-based probiotics and evaluate their efficacy in mitigating Salmonella-induced diarrhea in broiler chickens. The study employed three different culture media (MRS, TSB, and Baird Parker) to grow LP, which was then dried using a spray-drying technique to produce a stable probiotic formulation. When administered to broiler chickens, the LP probiotic derived from the MRS medium significantly improved body weight gain (4.147-fold increase over 4 weeks) compared to the other two culture conditions. Importantly, the LP probiotic treatment could substantially reduce the diarrhea index in broilers, with up to an 86.45% improvement in Salmonella-induced enteric infections. The beneficial effects were attributed to the ability of LP to modulate the gut microbiome, enhance the integrity of the intestinal mucosa, and mitigate the pathogenic effects of Salmonella. These findings demonstrate the potential of anaerobic Lactobacillus plantarum as a safe and effective probiotic intervention for controlling enteric diseases and improving production outcomes in poultry farming. The developed method provides a sustainable approach to harness the beneficial properties of this anaerobic bacterium for animal health and welfare.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.