Predicting cyclins based on key features and machine learning methods.

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Cheng-Yan Wu, Zhi-Xue Xu, Nan Li, Dan-Yang Qi, Hong-Ye Wu, Hui Ding, Yan-Ting Jin
{"title":"Predicting cyclins based on key features and machine learning methods.","authors":"Cheng-Yan Wu, Zhi-Xue Xu, Nan Li, Dan-Yang Qi, Hong-Ye Wu, Hui Ding, Yan-Ting Jin","doi":"10.1016/j.ymeth.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclins are a group of proteins that regulate the cell cycle process by modulating various stages of cell division to ensure correct cell proliferation, differentiation, and apoptosis. Research on cyclins is crucial for understanding the biological functions and pathological states of cells. However, current research on cyclin identification based on machine learning only focuses on accuracy ignoring the interpretability of features. Therefore, in this study, we pay more attention to the interpretation and analysis of key features associated with cyclins. Firstly, we developed an SVM-based model for identifying cyclins with an accuracy of 92.8% through 5-fold. Then we analyzed the physicochemical properties of the 14 key features used in the model construction and identified the G and charged C1 features that are critical for distinguishing cyclins from non-cyclins. Furthermore, we constructed an SVM-based model using only these two features with an accuracy of 81.3% through the leave-one-out cross-validation. Our study shows that cyclins differ from non-cyclins in their physicochemical properties and that using only two features can achieve good prediction accuracy.</p>","PeriodicalId":390,"journal":{"name":"Methods","volume":" ","pages":"112-119"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ymeth.2024.12.009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclins are a group of proteins that regulate the cell cycle process by modulating various stages of cell division to ensure correct cell proliferation, differentiation, and apoptosis. Research on cyclins is crucial for understanding the biological functions and pathological states of cells. However, current research on cyclin identification based on machine learning only focuses on accuracy ignoring the interpretability of features. Therefore, in this study, we pay more attention to the interpretation and analysis of key features associated with cyclins. Firstly, we developed an SVM-based model for identifying cyclins with an accuracy of 92.8% through 5-fold. Then we analyzed the physicochemical properties of the 14 key features used in the model construction and identified the G and charged C1 features that are critical for distinguishing cyclins from non-cyclins. Furthermore, we constructed an SVM-based model using only these two features with an accuracy of 81.3% through the leave-one-out cross-validation. Our study shows that cyclins differ from non-cyclins in their physicochemical properties and that using only two features can achieve good prediction accuracy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信