Structures, mechanisms, and kinetic advantages of the SgrAI filament forming mechanism.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nancy C Horton, Dmitry Lyumkis
{"title":"Structures, mechanisms, and kinetic advantages of the SgrAI filament forming mechanism.","authors":"Nancy C Horton, Dmitry Lyumkis","doi":"10.1080/10409238.2024.2440315","DOIUrl":null,"url":null,"abstract":"<p><p>This review documents investigations leading to the unprecedented discovery of filamentation as a mode of enzyme regulation in the type II restriction endonuclease SgrAI. Filamentation is defined here as linear or helical polymerization of a single enzyme as occurs for SgrAI, and has now been shown to occur in many other enzyme systems, including conserved metabolic enzymes. In the case of SgrAI, filamentation activates the DNA cleavage rate by up to 1000-fold and also alters the enzyme's DNA sequence specificity. The investigations began with the observation that SgrAI cleaves two types of recognition sequences, primary and secondary, but cleaves the secondary sequences only when present on the same DNA as at least one primary. DNA cleavage rate measurements showed how the primary sequence is both a substrate and an allosteric effector of SgrAI. Biophysical measurements indicated that the activated form of SgrAI, stimulated by binding to the primary sequence, consisted of varied numbers of the SgrAI bound to DNA. Structural studies revealed the activated state of SgrAI as a left-handed helical filament which stabilizes an altered enzyme conformation, which binds a second divalent cation in the active site. Efforts to determine the mechanism of DNA sequence specificity alteration are ongoing and current models are discussed. Finally, global kinetic modeling of the filament mediated DNA cleavage reaction and simulations of <i>in vivo</i> activity suggest that the filament mechanism evolved to rapidly cleave invading DNA while protecting the <i>Streptomyces</i> host genome.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"1-39"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2024.2440315","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This review documents investigations leading to the unprecedented discovery of filamentation as a mode of enzyme regulation in the type II restriction endonuclease SgrAI. Filamentation is defined here as linear or helical polymerization of a single enzyme as occurs for SgrAI, and has now been shown to occur in many other enzyme systems, including conserved metabolic enzymes. In the case of SgrAI, filamentation activates the DNA cleavage rate by up to 1000-fold and also alters the enzyme's DNA sequence specificity. The investigations began with the observation that SgrAI cleaves two types of recognition sequences, primary and secondary, but cleaves the secondary sequences only when present on the same DNA as at least one primary. DNA cleavage rate measurements showed how the primary sequence is both a substrate and an allosteric effector of SgrAI. Biophysical measurements indicated that the activated form of SgrAI, stimulated by binding to the primary sequence, consisted of varied numbers of the SgrAI bound to DNA. Structural studies revealed the activated state of SgrAI as a left-handed helical filament which stabilizes an altered enzyme conformation, which binds a second divalent cation in the active site. Efforts to determine the mechanism of DNA sequence specificity alteration are ongoing and current models are discussed. Finally, global kinetic modeling of the filament mediated DNA cleavage reaction and simulations of in vivo activity suggest that the filament mechanism evolved to rapidly cleave invading DNA while protecting the Streptomyces host genome.

SgrAI长丝成形机理的结构、机理及动力学优势。
这篇综述文件调查导致前所未有的发现,在II型限制性内切酶SgrAI中,成丝是一种酶调节模式。丝化在这里被定义为单个酶的线性或螺旋聚合,就像SgrAI发生的那样,现在已经证明在许多其他酶系统中也会发生,包括保守的代谢酶。在SgrAI的情况下,成丝激活DNA切割率高达1000倍,也改变了酶的DNA序列特异性。研究开始于观察到SgrAI切割两种类型的识别序列,一级和二级序列,但只有在与至少一个一级序列出现在相同的DNA上时才会切割二级序列。DNA切割速率测量表明,第一序列既是SgrAI的底物,也是其变构效应。生物物理测量表明,SgrAI的激活形式是由与DNA结合的不同数量的SgrAI组成的。结构研究表明SgrAI的激活状态为左旋螺旋状丝,它稳定了改变的酶构象,在活性位点结合第二个二价阳离子。努力确定DNA序列特异性改变的机制正在进行中,目前的模型进行了讨论。最后,对丝介导的DNA裂解反应的全局动力学建模和体内活性模拟表明,丝的进化机制可以在保护链霉菌宿主基因组的同时快速裂解入侵DNA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.90
自引率
0.00%
发文量
6
期刊介绍: As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties. Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology. Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信