Latexin (LXN) enhances tumor immune surveillance in mice by inhibiting Treg cells through the macrophage exosome pathway.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xuchen Sun, Xuanming Chen, Yuanting Ni, Xiuzhen Li, Jiaqi Song, Jingzhu Wang, Shaohua Xu, Wei Shu, Ming Chen
{"title":"Latexin (LXN) enhances tumor immune surveillance in mice by inhibiting Treg cells through the macrophage exosome pathway.","authors":"Xuchen Sun, Xuanming Chen, Yuanting Ni, Xiuzhen Li, Jiaqi Song, Jingzhu Wang, Shaohua Xu, Wei Shu, Ming Chen","doi":"10.1016/j.ijbiomac.2024.138822","DOIUrl":null,"url":null,"abstract":"<p><p>Latexin (LXN) is a secreted protein with a molecular weight of 29 KD, which is considered a tumor suppressor and plays an important role in the inflammatory immune response. LXN is highly expressed in macrophages and regulates macrophage polarity and tumor immune escape, demonstrating excellent clinical potential. However, its mechanism is still unclear. In this study, a macrophage-T cell co-culture system is established to clarify the secretion of macrophage LXN into the extracellular through exosomes. The results indicate that LXN in macrophage-derived exosomes is functional, that is, LXN-enriched exosome inhibits CD4<sup>+</sup>T cell differentiation into Treg cells in vitro and in vivo, and exhibits good tumor suppressive effects. Based on this discovery, a biomimetic nanoparticle loaded with LXN protein (MØ@LXN-NPS) is designed and synthesized. Furthermore, the MØ@LXN-NPS shows excellent performance in both in vivo and in vitro, especially in enhancing tumor immune surveillance by inhibiting Treg cells in tumor microenvironment, thus exhibiting excellent anti-tumor activity. This study provides a demonstration for the transition of biomolecules from functional research to engineering applications. The excellent performance of MØ@LXN-NPS in tumor immune regulation suggests that the engineered biomimetic nanomedicine has good clinical application prospects.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138822"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138822","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Latexin (LXN) is a secreted protein with a molecular weight of 29 KD, which is considered a tumor suppressor and plays an important role in the inflammatory immune response. LXN is highly expressed in macrophages and regulates macrophage polarity and tumor immune escape, demonstrating excellent clinical potential. However, its mechanism is still unclear. In this study, a macrophage-T cell co-culture system is established to clarify the secretion of macrophage LXN into the extracellular through exosomes. The results indicate that LXN in macrophage-derived exosomes is functional, that is, LXN-enriched exosome inhibits CD4+T cell differentiation into Treg cells in vitro and in vivo, and exhibits good tumor suppressive effects. Based on this discovery, a biomimetic nanoparticle loaded with LXN protein (MØ@LXN-NPS) is designed and synthesized. Furthermore, the MØ@LXN-NPS shows excellent performance in both in vivo and in vitro, especially in enhancing tumor immune surveillance by inhibiting Treg cells in tumor microenvironment, thus exhibiting excellent anti-tumor activity. This study provides a demonstration for the transition of biomolecules from functional research to engineering applications. The excellent performance of MØ@LXN-NPS in tumor immune regulation suggests that the engineered biomimetic nanomedicine has good clinical application prospects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信