Yongtai Wang, Huiyi Zhang, Yunong Li, Hua Yu, Dan Sun, Yujing Yang, Ran Zhang, Li Yu, Fei Ma, Muhammad Nauman Aftab, Liangcai Peng, Yanting Wang
{"title":"Effective xylan integration for remodeling biochar uniformity and porosity to enhance chemical elimination and CO<sub>2</sub> adsorption.","authors":"Yongtai Wang, Huiyi Zhang, Yunong Li, Hua Yu, Dan Sun, Yujing Yang, Ran Zhang, Li Yu, Fei Ma, Muhammad Nauman Aftab, Liangcai Peng, Yanting Wang","doi":"10.1016/j.ijbiomac.2024.138865","DOIUrl":null,"url":null,"abstract":"<p><p>Although plant evolution has offered diverse biomass resources, the production of high-quality biochar from desirable lignocelluloses remains unexplored. In this study, distinct lignocellulose substrates derived from eight representative plant species were employed to prepare biochar samples under three different temperature treatments. Correlation analysis showed that only hemicellulose was a consistently positive factor of lignocellulose substrates to account for the dye-adsorption capacities of diverse biochar samples. Furthermore, we integrated exo-xylan, a major hemicellulose in higher plants, into lignin-disassociated lignocelluloses to produce the desirable biochar with a uniform and symmetrical structure, resulting in a 5.2-fold increase in surface area (51 to 317 m<sup>2</sup>/g) and a 5.0-fold increase in total pore volume (0.02 to 0.11 cm<sup>3</sup>/g micropore, 0.02 to 0.12 cm<sup>3</sup>/g mesopore). This consequently improved the adsorption capacities of the remodeled biochar, with an increase of 26 % for dual-industry dyes, 90 % for 1579 organic compounds, and 14 % for CO<sub>2</sub>. Based on the fluorescence observation of xylan-cellulose co-localization and physical-chemical characterization of the remodeled biochar, a novel hypothetical model was proposed to explain how xylan plays an integral role in desired biochar production, providing insights into effective lignocellulose reconstruction and efficient thermochemical catalysis as an integrative strategy to maximize biochar adsorption capacity.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138865"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138865","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although plant evolution has offered diverse biomass resources, the production of high-quality biochar from desirable lignocelluloses remains unexplored. In this study, distinct lignocellulose substrates derived from eight representative plant species were employed to prepare biochar samples under three different temperature treatments. Correlation analysis showed that only hemicellulose was a consistently positive factor of lignocellulose substrates to account for the dye-adsorption capacities of diverse biochar samples. Furthermore, we integrated exo-xylan, a major hemicellulose in higher plants, into lignin-disassociated lignocelluloses to produce the desirable biochar with a uniform and symmetrical structure, resulting in a 5.2-fold increase in surface area (51 to 317 m2/g) and a 5.0-fold increase in total pore volume (0.02 to 0.11 cm3/g micropore, 0.02 to 0.12 cm3/g mesopore). This consequently improved the adsorption capacities of the remodeled biochar, with an increase of 26 % for dual-industry dyes, 90 % for 1579 organic compounds, and 14 % for CO2. Based on the fluorescence observation of xylan-cellulose co-localization and physical-chemical characterization of the remodeled biochar, a novel hypothetical model was proposed to explain how xylan plays an integral role in desired biochar production, providing insights into effective lignocellulose reconstruction and efficient thermochemical catalysis as an integrative strategy to maximize biochar adsorption capacity.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.