Anaerobic co-biodegradation of polyhydroxyalkanoate and swine manure for volatile fatty acid production: The impact of C/N ratios and microbial dynamics.
{"title":"Anaerobic co-biodegradation of polyhydroxyalkanoate and swine manure for volatile fatty acid production: The impact of C/N ratios and microbial dynamics.","authors":"Jiaxin Sun, Tanlong Zhou, Fubin Yin, Shunli Wang","doi":"10.1016/j.biortech.2024.131995","DOIUrl":null,"url":null,"abstract":"<p><p>Polyhydroxyalkanoate (PHA) is the important biodegradable plastic, however, biodegradation of PHA waste in anaerobic environments emits more CH<sub>4</sub>, a potent greenhouse gas. Bioconversion of PHA waste to useful byproducts - volatile fatty acids (VFAs) is a practical method to upcycle carbon from PHA. In this study, PHA waste was anaerobically co-digested with swine manure (SM) (the typical high nitrogen waste) at different C/N ratios. The results indicate that co-digestion of PHA and SM with a C/N ratio of 32.1 achieved VFA production of 5488 mg COD/L and 0.20 g COD/g VS. No significant differences were found in terms of the highest VFA concentrations between treatments with C/N ratios of 43.4 and 32.1. VFA produciton of 3655 mg COD/L and 0.14 g COD/g VS was achieved at 19 days by adjusting the C/N ratio to 19.2. Four bacteria were identified as dominant microorganisms responsible for converting PHA and SM to VFA.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"131995"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131995","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Polyhydroxyalkanoate (PHA) is the important biodegradable plastic, however, biodegradation of PHA waste in anaerobic environments emits more CH4, a potent greenhouse gas. Bioconversion of PHA waste to useful byproducts - volatile fatty acids (VFAs) is a practical method to upcycle carbon from PHA. In this study, PHA waste was anaerobically co-digested with swine manure (SM) (the typical high nitrogen waste) at different C/N ratios. The results indicate that co-digestion of PHA and SM with a C/N ratio of 32.1 achieved VFA production of 5488 mg COD/L and 0.20 g COD/g VS. No significant differences were found in terms of the highest VFA concentrations between treatments with C/N ratios of 43.4 and 32.1. VFA produciton of 3655 mg COD/L and 0.14 g COD/g VS was achieved at 19 days by adjusting the C/N ratio to 19.2. Four bacteria were identified as dominant microorganisms responsible for converting PHA and SM to VFA.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.