A novel mouse model of upper tract urothelial carcinoma highlights the impact of dietary intervention on gut microbiota and carcinogenesis prevention despite carcinogen exposure.
{"title":"A novel mouse model of upper tract urothelial carcinoma highlights the impact of dietary intervention on gut microbiota and carcinogenesis prevention despite carcinogen exposure.","authors":"Akinaru Yamamoto, Atsunari Kawashima, Toshihiro Uemura, Kosuke Nakano, Makoto Matsushita, Yu Ishizuya, Kentaro Jingushi, Hiroaki Hase, Kotoe Katayama, Rui Yamaguchi, Nesrine Sassi, Yuichi Motoyama, Satoshi Nojima, Masashi Mita, Tomonori Kimura, Daisuke Motooka, Yuki Horibe, Yohei Okuda, Toshiki Oka, Gaku Yamamichi, Eisuke Tomiyama, Yoko Koh, Yoshiyuki Yamamoto, Taigo Kato, Koji Hatano, Motohide Uemura, Seiya Imoto, Hisashi Wada, Eiichi Morii, Kazutake Tsujikawa, Norio Nonomura","doi":"10.1002/ijc.35295","DOIUrl":null,"url":null,"abstract":"<p><p>Animal models of N-butyl-N-(4-hydroxy butyl) nitrosamine (BBN)-induced urothelial carcinoma (UC), particularly bladder cancer (BC), have long been established. However, the rare incidence of BBN-induced upper urinary tract UC (UTUC), which originates from the same urothelium as BC, remains elusive. The scarcity of animal models of UTUC has made it challenging to study the biology of UTUC. To address this problem, we tried to establish a novel mouse model of UTUC by treating multiple mice strains and sexes with BBN. The molecular consistency between the UTUC mouse model and human UTUC was confirmed using multi-omics analyses, including whole-exome, whole-transcriptome, and spatial transcriptome sequencing. 16S ribosomal RNA metagenome sequencing, metabolome analysis, and dietary interventions were employed to assess changes in the gut microbiome, metabolome, and carcinogenesis of UTUC. Of all treated mice, only female BALB/c mice developed UTUC over BC. Multi-omics analyses confirmed that the UTUC model reflected the molecular characteristics and heterogeneity of human UTUC with poor prognosis. Furthermore, the model exhibited increased Tnf-related inflammatory gene expression in the upper urinary tract and a low relative abundance of Parabacteroides distasonis in the gut. Dietary intervention, mainly without alanine, led to P. distasonis upregulation and successfully prevented UTUC, as well as suppressed Tnf-related inflammatory gene expression in the upper urinary tract despite the exposure to BBN. This is the first report to demonstrate a higher incidence of UTUC than BC in a non-engineered mouse model using BBN. Overall, this model could serve as a useful tool for comprehensively investigating UTUC in future studies.</p>","PeriodicalId":180,"journal":{"name":"International Journal of Cancer","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ijc.35295","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animal models of N-butyl-N-(4-hydroxy butyl) nitrosamine (BBN)-induced urothelial carcinoma (UC), particularly bladder cancer (BC), have long been established. However, the rare incidence of BBN-induced upper urinary tract UC (UTUC), which originates from the same urothelium as BC, remains elusive. The scarcity of animal models of UTUC has made it challenging to study the biology of UTUC. To address this problem, we tried to establish a novel mouse model of UTUC by treating multiple mice strains and sexes with BBN. The molecular consistency between the UTUC mouse model and human UTUC was confirmed using multi-omics analyses, including whole-exome, whole-transcriptome, and spatial transcriptome sequencing. 16S ribosomal RNA metagenome sequencing, metabolome analysis, and dietary interventions were employed to assess changes in the gut microbiome, metabolome, and carcinogenesis of UTUC. Of all treated mice, only female BALB/c mice developed UTUC over BC. Multi-omics analyses confirmed that the UTUC model reflected the molecular characteristics and heterogeneity of human UTUC with poor prognosis. Furthermore, the model exhibited increased Tnf-related inflammatory gene expression in the upper urinary tract and a low relative abundance of Parabacteroides distasonis in the gut. Dietary intervention, mainly without alanine, led to P. distasonis upregulation and successfully prevented UTUC, as well as suppressed Tnf-related inflammatory gene expression in the upper urinary tract despite the exposure to BBN. This is the first report to demonstrate a higher incidence of UTUC than BC in a non-engineered mouse model using BBN. Overall, this model could serve as a useful tool for comprehensively investigating UTUC in future studies.
期刊介绍:
The International Journal of Cancer (IJC) is the official journal of the Union for International Cancer Control—UICC; it appears twice a month. IJC invites submission of manuscripts under a broad scope of topics relevant to experimental and clinical cancer research and publishes original Research Articles and Short Reports under the following categories:
-Cancer Epidemiology-
Cancer Genetics and Epigenetics-
Infectious Causes of Cancer-
Innovative Tools and Methods-
Molecular Cancer Biology-
Tumor Immunology and Microenvironment-
Tumor Markers and Signatures-
Cancer Therapy and Prevention