Julio Lopez, Antonia Filingeri, Andrea Culcasi, Marc Fernández de Labastida, Alessandro Tamburini, José Luis Cortina, Giorgio Micale, Andrea Cipollina
{"title":"Electrodialysis with Bipolar Membranes to valorise saline waste streams: Analysing the fate of valuable minor elements.","authors":"Julio Lopez, Antonia Filingeri, Andrea Culcasi, Marc Fernández de Labastida, Alessandro Tamburini, José Luis Cortina, Giorgio Micale, Andrea Cipollina","doi":"10.1016/j.scitotenv.2024.177934","DOIUrl":null,"url":null,"abstract":"<p><p>Brine mining can represent a valuable non-conventional resource for the extraction of Mg, Li, B, Sr and other Trace Elements (TEs) such as Rb, Cs, whose recoveries require chemical reagents such as alkaline and acidic solutions. In a circular strategy, these required chemicals can be produced in-situ through Electrodialysis with Bipolar Membranes (EDBM). In this work, a laboratory EDBM unit was operated using real brines from Trapani saltworks to investigate, for the first time, the migration of minor and trace ions, as Li, B, Sr, Cs and Rb through ion-exchange membranes (IEMs). Two different operating configurations were tested by feeding real brines: i) only in the salt channel or ii) in both salt and alkaline compartments. Trace ions migration was assessed by determining their apparent transport number in IEMs to better understanding their \"fate\" within the EDBM process. The use of real solutions in the base channel resulted in a 50 % reduction in the process water demand, while achieving similar overall Current Efficiencies (75-78 %) and Specific Energy Consumptions (1.50-1.80 kWh/kg<sub>NaOH</sub>) compared to the reference layout, where real brine was only fed in the salt compartment. Li, Rb, Sr and Cs were mostly transported across the cation-exchange membrane and concentrated in the alkaline channel. Such results lay the ground for the use of complex (multi-ionic) solutions and new designs of the EDBM process that can be operated in integrated chains to valorise saline wastes, reducing water consumption and avoiding the dilution of trace elements before their selective recovery.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"958 ","pages":"177934"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177934","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Brine mining can represent a valuable non-conventional resource for the extraction of Mg, Li, B, Sr and other Trace Elements (TEs) such as Rb, Cs, whose recoveries require chemical reagents such as alkaline and acidic solutions. In a circular strategy, these required chemicals can be produced in-situ through Electrodialysis with Bipolar Membranes (EDBM). In this work, a laboratory EDBM unit was operated using real brines from Trapani saltworks to investigate, for the first time, the migration of minor and trace ions, as Li, B, Sr, Cs and Rb through ion-exchange membranes (IEMs). Two different operating configurations were tested by feeding real brines: i) only in the salt channel or ii) in both salt and alkaline compartments. Trace ions migration was assessed by determining their apparent transport number in IEMs to better understanding their "fate" within the EDBM process. The use of real solutions in the base channel resulted in a 50 % reduction in the process water demand, while achieving similar overall Current Efficiencies (75-78 %) and Specific Energy Consumptions (1.50-1.80 kWh/kgNaOH) compared to the reference layout, where real brine was only fed in the salt compartment. Li, Rb, Sr and Cs were mostly transported across the cation-exchange membrane and concentrated in the alkaline channel. Such results lay the ground for the use of complex (multi-ionic) solutions and new designs of the EDBM process that can be operated in integrated chains to valorise saline wastes, reducing water consumption and avoiding the dilution of trace elements before their selective recovery.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.