Qihang Ding, Aoxue Guo, Shuai Zhang, Chuanqi Gu, Xinyu Wang, Xin Li, Meijia Gu, Jong Seung Kim
{"title":"Phototheranostics: An advanced approach for precise diagnosis and treatment of gynecological inflammation and tumors.","authors":"Qihang Ding, Aoxue Guo, Shuai Zhang, Chuanqi Gu, Xinyu Wang, Xin Li, Meijia Gu, Jong Seung Kim","doi":"10.1016/j.biomaterials.2024.123012","DOIUrl":null,"url":null,"abstract":"<p><p>Gynecological inflammations have a significant impact on the daily lives of women. Meanwhile, cancers such as ovarian, cervical, and endometrial cancers pose severe threats to their physical and mental well-being. While current options such as conventional pharmacotherapy, surgical interventions, and recent advancements in immunotherapy and targeted therapy provide viable solutions, they possess limitations in effectively addressing the intricacies associated with gynecological diseases. These complexities include post-surgical complications, early cancer detection, and drug resistance. The management of these challenges, however, requires the implementation of innovative treatment modalities. Phototheranostics has emerged as a promising approach to effectively address these challenges. It not only treats inflammation and tumors efficiently but also aids in disease imaging and diagnosis. The distinguishing features of phototheranostics lie in their non-invasive nature, minimal risk of drug resistance, and precise targeting capabilities through the use of photosensitizers or photothermal agents. These distinctive features underscore its potential to revolutionize early diagnosis and treatment of gynecological conditions. This review aims to summarize the application of phototheranostics in managing gynecological inflammation and tumors while highlighting its significant potential for early disease detection and treatment.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"316 ","pages":"123012"},"PeriodicalIF":12.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gynecological inflammations have a significant impact on the daily lives of women. Meanwhile, cancers such as ovarian, cervical, and endometrial cancers pose severe threats to their physical and mental well-being. While current options such as conventional pharmacotherapy, surgical interventions, and recent advancements in immunotherapy and targeted therapy provide viable solutions, they possess limitations in effectively addressing the intricacies associated with gynecological diseases. These complexities include post-surgical complications, early cancer detection, and drug resistance. The management of these challenges, however, requires the implementation of innovative treatment modalities. Phototheranostics has emerged as a promising approach to effectively address these challenges. It not only treats inflammation and tumors efficiently but also aids in disease imaging and diagnosis. The distinguishing features of phototheranostics lie in their non-invasive nature, minimal risk of drug resistance, and precise targeting capabilities through the use of photosensitizers or photothermal agents. These distinctive features underscore its potential to revolutionize early diagnosis and treatment of gynecological conditions. This review aims to summarize the application of phototheranostics in managing gynecological inflammation and tumors while highlighting its significant potential for early disease detection and treatment.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.