Overcoming drug delivery challenges with lipid-based nanofibers for enhanced wound repair.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Aaqib Javaid, Krishana Kumar Sharma, Prakhar Varshney, Anurag Verma, Shyam Lal Mudavath
{"title":"Overcoming drug delivery challenges with lipid-based nanofibers for enhanced wound repair.","authors":"Aaqib Javaid, Krishana Kumar Sharma, Prakhar Varshney, Anurag Verma, Shyam Lal Mudavath","doi":"10.1039/d4bm01536c","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing is a dynamic, multi-phase process that includes haemostasis, tissue regeneration, cellular proliferation, and matrix modification. Traditional wound care procedures frequently encounter complications such as delayed healing and infection, demanding new therapeutic approaches. In this context, nanomaterial-based devices provide considerable benefits due to their capacity to improve medication delivery and tissue healing. We suggest a lipid-based nanofiber formulation for wound treatment that overcomes the restricted skin penetration of hydrophilic niacin, a strong wound healing agent. Niacin-loaded nanofibers (NLNFs) were manufactured utilizing glyceryl monostearate (GMS) by a self-assembly process, which included high-pressure homogenization and probe sonication for optimum nanostructure creation. The NLNFs were physicochemically characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM) and surface profilometry to determine their morphology and homogeneity, and a drop shape analyser was used to determine hydrophobicity. <i>In vitro</i> tests revealed prolonged drug release, great cytocompatibility, and strong antioxidant activity, indicating superior free radical scavenging capacity. <i>Ex vivo</i> tests, such as the Draize skin irritation test, skin permeation test, and drug retention assays, revealed low skin irritation, increased permeability, and efficient drug retention in skin layers. <i>In vivo</i> experiments showed rapid wound closure and positive histological results, which were backed by hemocompatibility tests such as hemolysis and whole blood clot analysis, validating the formulation's safety. ELISA results indicated that the NLNF-treated group had higher levels of critical wound-healing indicators than the controls. Overall, our findings suggest that NLNFs have tremendous potential as a unique and effective treatment alternative for controlling and improving wound healing processes.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01536c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Wound healing is a dynamic, multi-phase process that includes haemostasis, tissue regeneration, cellular proliferation, and matrix modification. Traditional wound care procedures frequently encounter complications such as delayed healing and infection, demanding new therapeutic approaches. In this context, nanomaterial-based devices provide considerable benefits due to their capacity to improve medication delivery and tissue healing. We suggest a lipid-based nanofiber formulation for wound treatment that overcomes the restricted skin penetration of hydrophilic niacin, a strong wound healing agent. Niacin-loaded nanofibers (NLNFs) were manufactured utilizing glyceryl monostearate (GMS) by a self-assembly process, which included high-pressure homogenization and probe sonication for optimum nanostructure creation. The NLNFs were physicochemically characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy (SEM) and surface profilometry to determine their morphology and homogeneity, and a drop shape analyser was used to determine hydrophobicity. In vitro tests revealed prolonged drug release, great cytocompatibility, and strong antioxidant activity, indicating superior free radical scavenging capacity. Ex vivo tests, such as the Draize skin irritation test, skin permeation test, and drug retention assays, revealed low skin irritation, increased permeability, and efficient drug retention in skin layers. In vivo experiments showed rapid wound closure and positive histological results, which were backed by hemocompatibility tests such as hemolysis and whole blood clot analysis, validating the formulation's safety. ELISA results indicated that the NLNF-treated group had higher levels of critical wound-healing indicators than the controls. Overall, our findings suggest that NLNFs have tremendous potential as a unique and effective treatment alternative for controlling and improving wound healing processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信