IN SILICO BASED RE-ENGINEERING OF A COMPUTATIONALLY DESIGNED BIOSENSOR WITH ALTERED SIGNALLING MODE AND IMPROVED DYNAMIC RANGE.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dustin D Smith, D Wade Abbott, Hans-Joachim Wieden
{"title":"IN SILICO BASED RE-ENGINEERING OF A COMPUTATIONALLY DESIGNED BIOSENSOR WITH ALTERED SIGNALLING MODE AND IMPROVED DYNAMIC RANGE.","authors":"Dustin D Smith, D Wade Abbott, Hans-Joachim Wieden","doi":"10.1016/j.abb.2024.110275","DOIUrl":null,"url":null,"abstract":"<p><p>A current challenge in the rational design of biomolecular sensors is the ability to custom design binding affinities and detection mode in silico. To this end, we re-engineered a previously reported computationally-designed fluorescent maltooligosaccharide (MOS)-detecting biosensor to both alter its ligand-binding affinity and to analyse the underlying sensing mechanism. The dynamic range of the biosensor was expanded through the computer aided introduction of a series of amino acid substitutions in the starting protein scaffold (MalX from Streptococcus pneumoniae), which generated a biosensor set with binding affinities spanning over five orders of magnitude. The impact of the introduced substitutions on the underlying mode of signal generation was assessed in silico using our previously reported Computational Identification of Non-disruptive Conjugation sites (CINC) pipeline. CINC utilizes molecular dynamics simulations and an in-house developed algorithm to examine and exploit the structural dynamics of a protein at amino acid-level resolution. Using CINC, we demonstrate that re-engineering of the MOS-detecting biosensor set resulted in sensors with two distinct output modes which differed based on local conformational changes at the fluorescently modified reporter position. These output modes were classified as \"ligand-sensing\"-type biosensors (readout based on the tool sensing a unique conformation in the ligand-bound state), and \"apo-sensing\"-type biosensors (readout based on the tool sensing a unique conformation in the apo state). Together, these results demonstrate that structural dynamics at the individual amino acid residue level can be used as an engineer-able feature to rationally alter the fluorescence reporting properties of a biosensing device. Moving forward, the CINC workflow can also be adapted for the rational design of protein dynamic properties maximizing its utility as an in silico design platform for custom biomolecular tools.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110275"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.abb.2024.110275","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A current challenge in the rational design of biomolecular sensors is the ability to custom design binding affinities and detection mode in silico. To this end, we re-engineered a previously reported computationally-designed fluorescent maltooligosaccharide (MOS)-detecting biosensor to both alter its ligand-binding affinity and to analyse the underlying sensing mechanism. The dynamic range of the biosensor was expanded through the computer aided introduction of a series of amino acid substitutions in the starting protein scaffold (MalX from Streptococcus pneumoniae), which generated a biosensor set with binding affinities spanning over five orders of magnitude. The impact of the introduced substitutions on the underlying mode of signal generation was assessed in silico using our previously reported Computational Identification of Non-disruptive Conjugation sites (CINC) pipeline. CINC utilizes molecular dynamics simulations and an in-house developed algorithm to examine and exploit the structural dynamics of a protein at amino acid-level resolution. Using CINC, we demonstrate that re-engineering of the MOS-detecting biosensor set resulted in sensors with two distinct output modes which differed based on local conformational changes at the fluorescently modified reporter position. These output modes were classified as "ligand-sensing"-type biosensors (readout based on the tool sensing a unique conformation in the ligand-bound state), and "apo-sensing"-type biosensors (readout based on the tool sensing a unique conformation in the apo state). Together, these results demonstrate that structural dynamics at the individual amino acid residue level can be used as an engineer-able feature to rationally alter the fluorescence reporting properties of a biosensing device. Moving forward, the CINC workflow can also be adapted for the rational design of protein dynamic properties maximizing its utility as an in silico design platform for custom biomolecular tools.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信