Toward Automated DNA Nanoprinting: Advancing the Synthesis of Covalently Branched DNA.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Fangzhou Zhao, Daniel Saliba, Jathavan Asohan, Hanadi F Sleiman
{"title":"Toward Automated DNA Nanoprinting: Advancing the Synthesis of Covalently Branched DNA.","authors":"Fangzhou Zhao, Daniel Saliba, Jathavan Asohan, Hanadi F Sleiman","doi":"10.1002/smtd.202401477","DOIUrl":null,"url":null,"abstract":"<p><p>Covalently branched DNA molecules are hybrid structures where a small molecule core is covalently linked to different DNA strands. They merge the programmability of DNA nanotechnology with synthetic molecules' functionality, offering enhanced stability over their non-covalent counterparts like double-crossover tiles. They enable the efficient assembly of stable DNA nanostructures with new geometries and functionalities. These motifs can be prepared through \"DNA printing\", which uses a DNA nanostructure as a temporary template to covalently transfer specific DNA strands to a small molecule core. Here, the \"printing\" process is streamlined with DNA-immobilized polystyrene microspheres, laying the foundation for future automated DNA printing devices. First, the DNA template hybridizes with reactive complementary strands, which are then crosslinked using a small molecule. Second, beads with fully complementary molecules capture the \"daughter\" products by strand displacement. This ensures high product yields and high recovery of the \"mother\" template for reuse. This method allows the precise transfer of different DNA strands onto various small molecules, including aromatics and functional porphyrins. Notably, these branching motifs exhibit remarkable stability toward nucleases without any specialized modifications. Moreover, they can serve as robust building blocks for precise assembly of 3D structures, such as an addressable tetrahedron from only two components.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401477"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401477","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Covalently branched DNA molecules are hybrid structures where a small molecule core is covalently linked to different DNA strands. They merge the programmability of DNA nanotechnology with synthetic molecules' functionality, offering enhanced stability over their non-covalent counterparts like double-crossover tiles. They enable the efficient assembly of stable DNA nanostructures with new geometries and functionalities. These motifs can be prepared through "DNA printing", which uses a DNA nanostructure as a temporary template to covalently transfer specific DNA strands to a small molecule core. Here, the "printing" process is streamlined with DNA-immobilized polystyrene microspheres, laying the foundation for future automated DNA printing devices. First, the DNA template hybridizes with reactive complementary strands, which are then crosslinked using a small molecule. Second, beads with fully complementary molecules capture the "daughter" products by strand displacement. This ensures high product yields and high recovery of the "mother" template for reuse. This method allows the precise transfer of different DNA strands onto various small molecules, including aromatics and functional porphyrins. Notably, these branching motifs exhibit remarkable stability toward nucleases without any specialized modifications. Moreover, they can serve as robust building blocks for precise assembly of 3D structures, such as an addressable tetrahedron from only two components.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信