Saranya Srinivasan, Shruti Mishra, Kenneth Ka-Ho Fan, Liwen Wang, John Im, Courtney Segura, Neelam Mukherjee, Gang Huang, Manjeet Rao, Chaoyu Ma, Nu Zhang
{"title":"Age-Dependent Bi-Phasic Dynamics of Ly49<sup>+</sup>CD8<sup>+</sup> Regulatory T Cell Population.","authors":"Saranya Srinivasan, Shruti Mishra, Kenneth Ka-Ho Fan, Liwen Wang, John Im, Courtney Segura, Neelam Mukherjee, Gang Huang, Manjeet Rao, Chaoyu Ma, Nu Zhang","doi":"10.1111/acel.14461","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is tightly associated with reduced immune protection but increased risk of autoimmunity and inflammatory conditions. Regulatory T cells are one of the key cells to maintaining immune homeostasis. The age-dependent changes in CD4<sup>+</sup>Foxp3<sup>+</sup> regulatory T cells (Tregs) have been well documented. However, the nonredundant Foxp3<sup>-</sup>CD8<sup>+</sup> Tregs were never examined in the context of aging. This study first established clear distinctions between phenotypically overlapping CD8<sup>+</sup> Tregs and virtual memory T cells. Then, we elucidated the dynamics of CD8<sup>+</sup> Tregs across the lifespan in mice and further extended our investigation to human peripheral blood mononuclear cells (PBMCs). In mice, we discovered a bi-phasic dynamic shift in the frequency of CD8<sup>+</sup>CD44<sup>hi</sup>CD122<sup>hi</sup>Ly49<sup>+</sup> Tregs, with a steady increase in young adults and a notable peak in middle age followed by a decline in older mice. Transcriptomic analysis revealed that mouse CD8<sup>+</sup> Tregs upregulated a selected set of natural killer (NK) cell-associated genes, including NKG2D, with age. Importantly, NKG2D might negatively regulate CD8<sup>+</sup> Tregs. Additionally, by analyzing a scRNA-seq dataset of human PBMC, we found a distinct CD8<sup>+</sup> Treg-like subset (Cluster 10) with comparable age-dependent frequency changes and gene expression, suggesting a conserved aging pattern in CD8<sup>+</sup> Treg across mice and humans. In summary, our findings highlight the importance of CD8<sup>+</sup> Tregs in immune regulation and aging.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14461"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14461","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is tightly associated with reduced immune protection but increased risk of autoimmunity and inflammatory conditions. Regulatory T cells are one of the key cells to maintaining immune homeostasis. The age-dependent changes in CD4+Foxp3+ regulatory T cells (Tregs) have been well documented. However, the nonredundant Foxp3-CD8+ Tregs were never examined in the context of aging. This study first established clear distinctions between phenotypically overlapping CD8+ Tregs and virtual memory T cells. Then, we elucidated the dynamics of CD8+ Tregs across the lifespan in mice and further extended our investigation to human peripheral blood mononuclear cells (PBMCs). In mice, we discovered a bi-phasic dynamic shift in the frequency of CD8+CD44hiCD122hiLy49+ Tregs, with a steady increase in young adults and a notable peak in middle age followed by a decline in older mice. Transcriptomic analysis revealed that mouse CD8+ Tregs upregulated a selected set of natural killer (NK) cell-associated genes, including NKG2D, with age. Importantly, NKG2D might negatively regulate CD8+ Tregs. Additionally, by analyzing a scRNA-seq dataset of human PBMC, we found a distinct CD8+ Treg-like subset (Cluster 10) with comparable age-dependent frequency changes and gene expression, suggesting a conserved aging pattern in CD8+ Treg across mice and humans. In summary, our findings highlight the importance of CD8+ Tregs in immune regulation and aging.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.