The influence of carbon dioxide on fermentation products, microbial community, and functional gene in food waste fermentation with uncontrol pH.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Xin-Rong Pan, Pei-Ken Shang-Guan, Shu-Hui Li, Chu-Hao Zhang, Jia-Min Lou, Liang Guo, Lu Liu, Yin Lu
{"title":"The influence of carbon dioxide on fermentation products, microbial community, and functional gene in food waste fermentation with uncontrol pH.","authors":"Xin-Rong Pan, Pei-Ken Shang-Guan, Shu-Hui Li, Chu-Hao Zhang, Jia-Min Lou, Liang Guo, Lu Liu, Yin Lu","doi":"10.1016/j.envres.2024.120645","DOIUrl":null,"url":null,"abstract":"<p><p>Food waste is a major problem faced by human beings. Acidogenic fermentation is an effective and feasible technology for resource recovery from food waste. The mixture of volatile fatty acids (VFAs) hinders the utilization of fermentation products. In this study, we constructed fermentation reactors for food waste treatment. The operation period was separated to three stages: Stage 1 (from day 1 to 102), Stage 2 (from day 103 to 208), and Stage 3 (from day 209 to 304). CO<sub>2</sub> was sparged to the reactors to promote the acetate enrichment at Stage 3. Bioinformatics analysis were performed to analyze the microbial community, genes, and pathways. Results showed that the highest average concentration of acetate was 6044 mg-COD/L (R1) and 5000 mg-COD/L (R2) at Stage 3, which was corresponded to the stage with highest acetate ratio (63% and 66% in R1 and R2). But the highest total VFAs concentration was 39424 mg-COD/L at Stage 2. Aeriscardovia belonging to Actinobacteria had an average relative abundance of 85.7% after CO<sub>2</sub> sparging. Comparing to Stage 1 and Stage 2, the number of down-regulated genes and pathways were much more than the number of up-regulated genes with CO<sub>2</sub> sparging. The significant down-regulated genes were wcaB and ttrC, and the significant down-regulated pathways were pyruvate fermentation to acetone and acetyl-CoA fermentation to butanoate II pathway. This study demonstrated that CO<sub>2</sub> can promote the acetate enrichment during food waste fermentation. The main mechanism was enriching acetate fermentation microorganisms and inhibiting the interfere genes and pathways.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120645"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120645","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Food waste is a major problem faced by human beings. Acidogenic fermentation is an effective and feasible technology for resource recovery from food waste. The mixture of volatile fatty acids (VFAs) hinders the utilization of fermentation products. In this study, we constructed fermentation reactors for food waste treatment. The operation period was separated to three stages: Stage 1 (from day 1 to 102), Stage 2 (from day 103 to 208), and Stage 3 (from day 209 to 304). CO2 was sparged to the reactors to promote the acetate enrichment at Stage 3. Bioinformatics analysis were performed to analyze the microbial community, genes, and pathways. Results showed that the highest average concentration of acetate was 6044 mg-COD/L (R1) and 5000 mg-COD/L (R2) at Stage 3, which was corresponded to the stage with highest acetate ratio (63% and 66% in R1 and R2). But the highest total VFAs concentration was 39424 mg-COD/L at Stage 2. Aeriscardovia belonging to Actinobacteria had an average relative abundance of 85.7% after CO2 sparging. Comparing to Stage 1 and Stage 2, the number of down-regulated genes and pathways were much more than the number of up-regulated genes with CO2 sparging. The significant down-regulated genes were wcaB and ttrC, and the significant down-regulated pathways were pyruvate fermentation to acetone and acetyl-CoA fermentation to butanoate II pathway. This study demonstrated that CO2 can promote the acetate enrichment during food waste fermentation. The main mechanism was enriching acetate fermentation microorganisms and inhibiting the interfere genes and pathways.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信