Mariam Dianat, Sarah Straaten, Aldo Maritato, Daniel Wibberg, Tobias Busche, Lars M. Blank, Birgitta E. Ebert
{"title":"Exploration of In Situ Extraction for Enhanced Triterpenoid Production by Saccharomyces cerevisiae","authors":"Mariam Dianat, Sarah Straaten, Aldo Maritato, Daniel Wibberg, Tobias Busche, Lars M. Blank, Birgitta E. Ebert","doi":"10.1111/1751-7915.70061","DOIUrl":null,"url":null,"abstract":"<p>Plant-derived triterpenoids are in high demand due to their valuable applications in cosmetic, nutraceutical, and pharmaceutical industries. To meet this demand, microbial production of triterpenoids is being developed for large-scale production. However, a prominent limitation of microbial synthesis is the intracellular accumulation, requiring cell disruption during downstream processing. Destroying the whole-cell catalyst drives up production costs and limits productivity and product yield per cell. Here, in situ product extraction of triterpenoids into a second organic phase was researched to address this limitation. An organic solvent screening identified water-immiscible isopropyl myristate as a suitable in situ extractant, enabling extraction of up to 90% of total triterpenoids from engineered <i>Saccharomyces cerevisiae</i>. Combining isopropyl myristate and β-cyclodextrins improved extraction efficiency. In a first configuration, repeated batch fermentation with sequential product extraction and cell recycling resulted in 1.8 times higher production than a reference fermentation without in situ product extraction. In the second configuration, yeast cells were in contact with the second organic phase throughout a fed-batch fermentation to continuously extract triterpenoids. This resulted in 90% product extraction and an extended production phase. Further improvement of triterpenoid production was not achieved due to microbial host limitations uncovered through omics analyses.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 12","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70061","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-derived triterpenoids are in high demand due to their valuable applications in cosmetic, nutraceutical, and pharmaceutical industries. To meet this demand, microbial production of triterpenoids is being developed for large-scale production. However, a prominent limitation of microbial synthesis is the intracellular accumulation, requiring cell disruption during downstream processing. Destroying the whole-cell catalyst drives up production costs and limits productivity and product yield per cell. Here, in situ product extraction of triterpenoids into a second organic phase was researched to address this limitation. An organic solvent screening identified water-immiscible isopropyl myristate as a suitable in situ extractant, enabling extraction of up to 90% of total triterpenoids from engineered Saccharomyces cerevisiae. Combining isopropyl myristate and β-cyclodextrins improved extraction efficiency. In a first configuration, repeated batch fermentation with sequential product extraction and cell recycling resulted in 1.8 times higher production than a reference fermentation without in situ product extraction. In the second configuration, yeast cells were in contact with the second organic phase throughout a fed-batch fermentation to continuously extract triterpenoids. This resulted in 90% product extraction and an extended production phase. Further improvement of triterpenoid production was not achieved due to microbial host limitations uncovered through omics analyses.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes