Control of Tissue Strain Is Essential for Enhanced Dermal Innervation in the Three-Dimensional Skin Engineering.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shigenori Miura, Minghao Nie, Kazuo Emoto, Shoji Takeuchi
{"title":"Control of Tissue Strain Is Essential for Enhanced Dermal Innervation in the Three-Dimensional Skin Engineering.","authors":"Shigenori Miura, Minghao Nie, Kazuo Emoto, Shoji Takeuchi","doi":"10.1021/acsbiomaterials.4c01097","DOIUrl":null,"url":null,"abstract":"<p><p>Engineered skin models with sensory innervation are a growing and challenging field of research aimed at applications in regenerative medicine, biosensing, and drug screening. Researchers are attempting to fabricate innervated skin tissues using collagen sponges, cell culture inserts, and microfluidic devices to partially mimic the layered structure of the skin. However, innervation of the full-thickness skin model has not yet been achieved. Here, using the anchoring culture device we previously reported, which is a powerful tool to construct a full-thickness three-dimensional (3D) skin model with balanced tissue contraction forces, we drastically improved dermal layer innervation using a composite hydrogel of collagen and Matrigel (Coll:MG). To determine the preferable hydrogel matrix for neurite extension in the 3D skin construct, DRG neural spheroids were placed at the bottom of the dermal layer composed of various hydrogel scaffold, including type I collagen from different origins (dermis or tendon) and Coll:MG composite hydrogel with different compositions. We showed that the Coll:MG (2:1) composite hydrogel significantly increased vertical neurite extension in the dermal layer, concomitant with the reduced tissue shrinkage during the culture. In contrast, in the collagen-only hydrogel, neurite extension occurred mostly in the horizontal direction, and tissues sometimes detached from the anchors due to significant shrinkage, indicating that tissue shrinkage may affect the direction of neurite extension. To exemplify this idea, 3D skin constructed in the device was partially detached from the anchors to comply with the cell-induced tissue shrinkage and reduce the strain on the tissue. The data showed that the partial allowance of in-plane tissue strain remarkably increased vertical neurite extension compared to the control cultures. Collectively, our results strongly suggest that neurite extension angles can be modulated by adjusting the tissue strain during the culture. Our findings highlight the importance of controlling tissue strain for the advancement of an innervated skin model.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01097","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Engineered skin models with sensory innervation are a growing and challenging field of research aimed at applications in regenerative medicine, biosensing, and drug screening. Researchers are attempting to fabricate innervated skin tissues using collagen sponges, cell culture inserts, and microfluidic devices to partially mimic the layered structure of the skin. However, innervation of the full-thickness skin model has not yet been achieved. Here, using the anchoring culture device we previously reported, which is a powerful tool to construct a full-thickness three-dimensional (3D) skin model with balanced tissue contraction forces, we drastically improved dermal layer innervation using a composite hydrogel of collagen and Matrigel (Coll:MG). To determine the preferable hydrogel matrix for neurite extension in the 3D skin construct, DRG neural spheroids were placed at the bottom of the dermal layer composed of various hydrogel scaffold, including type I collagen from different origins (dermis or tendon) and Coll:MG composite hydrogel with different compositions. We showed that the Coll:MG (2:1) composite hydrogel significantly increased vertical neurite extension in the dermal layer, concomitant with the reduced tissue shrinkage during the culture. In contrast, in the collagen-only hydrogel, neurite extension occurred mostly in the horizontal direction, and tissues sometimes detached from the anchors due to significant shrinkage, indicating that tissue shrinkage may affect the direction of neurite extension. To exemplify this idea, 3D skin constructed in the device was partially detached from the anchors to comply with the cell-induced tissue shrinkage and reduce the strain on the tissue. The data showed that the partial allowance of in-plane tissue strain remarkably increased vertical neurite extension compared to the control cultures. Collectively, our results strongly suggest that neurite extension angles can be modulated by adjusting the tissue strain during the culture. Our findings highlight the importance of controlling tissue strain for the advancement of an innervated skin model.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信