{"title":"Do-Nothing Prebiotic Chemistry: Chemical Kinetics as a Window into Prebiotic Plausibility.","authors":"Skyla B White, Paul B Rimmer","doi":"10.1021/acs.accounts.4c00247","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusOrigin of Life research is a fast growing field of study with each year bringing new breakthroughs. Recent discoveries include novel syntheses of life's building blocks, mechanisms of activation and interaction between molecules, and newly identified environments that provide promising conditions for these syntheses and mechanisms. Even with these new findings, firmly grounded in rigorous laboratory experiments, researchers often find themselves uncertain about how to apply them. How can a bridge be built between the laboratory and the geochemical environment? A critical question to ask when seeking to apply new results in origins is: how can this chemistry occur without direct intervention from a chemist? We believe the first step toward answering this question lies in the determination of rate constants and the construction of chemical networks to describe prebiotic chemistry in geochemical environments.So far, our group has measured several rate constants relevant to different prebiotic reaction networks, starting with the synthetic pathways of the cyanosulfidic network. The reactions we explore often involve ultraviolet light-driven photochemistry, facilitated by our StarLab setup that accurately simulates the spectrum of the young Sun and other stars. Our latest work investigates environments with active photochemistry in the absence of cyanide. In this study, we measure the effective rate constant for the production of formate from the reduction of carbon species using sulfite within the context of early Martian waters. The underlying goal of the work done in our group is to predict the likelihood that certain geological conditions will result in a specific set of chemical products. These predictions can be combined with those we have made for the necessary astrophysical conditions in certain origins of life scenarios on extrasolar planets.In the near future we expect that a sufficient number of rate constants will be measured, by our group and others, to allow for aspects of prebiotic chemistry to be predicted using chemical kinetics models. Once these models have been benchmarked against experimental data, our next step will be applying them to natural environments that better mimic the conditions thought to have been present at the onset of life. Following this, we can test these models by comparing their predictions to additional experiments. After refinement, these models will be able to provide guidance on the optimal conditions for conducting laboratory experiments, while helping to minimize and characterize any interference from a chemist.This approach can provide valuable insights into what is possible within geochemical environments, where all chemistry is by necessity do-nothing chemistry.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00247","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ConspectusOrigin of Life research is a fast growing field of study with each year bringing new breakthroughs. Recent discoveries include novel syntheses of life's building blocks, mechanisms of activation and interaction between molecules, and newly identified environments that provide promising conditions for these syntheses and mechanisms. Even with these new findings, firmly grounded in rigorous laboratory experiments, researchers often find themselves uncertain about how to apply them. How can a bridge be built between the laboratory and the geochemical environment? A critical question to ask when seeking to apply new results in origins is: how can this chemistry occur without direct intervention from a chemist? We believe the first step toward answering this question lies in the determination of rate constants and the construction of chemical networks to describe prebiotic chemistry in geochemical environments.So far, our group has measured several rate constants relevant to different prebiotic reaction networks, starting with the synthetic pathways of the cyanosulfidic network. The reactions we explore often involve ultraviolet light-driven photochemistry, facilitated by our StarLab setup that accurately simulates the spectrum of the young Sun and other stars. Our latest work investigates environments with active photochemistry in the absence of cyanide. In this study, we measure the effective rate constant for the production of formate from the reduction of carbon species using sulfite within the context of early Martian waters. The underlying goal of the work done in our group is to predict the likelihood that certain geological conditions will result in a specific set of chemical products. These predictions can be combined with those we have made for the necessary astrophysical conditions in certain origins of life scenarios on extrasolar planets.In the near future we expect that a sufficient number of rate constants will be measured, by our group and others, to allow for aspects of prebiotic chemistry to be predicted using chemical kinetics models. Once these models have been benchmarked against experimental data, our next step will be applying them to natural environments that better mimic the conditions thought to have been present at the onset of life. Following this, we can test these models by comparing their predictions to additional experiments. After refinement, these models will be able to provide guidance on the optimal conditions for conducting laboratory experiments, while helping to minimize and characterize any interference from a chemist.This approach can provide valuable insights into what is possible within geochemical environments, where all chemistry is by necessity do-nothing chemistry.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.