HMGB1 Accelerates Wound Healing by Promoting the Differentiation of Epidermal Stem Cells via the "HMGB1-TLR4-Wnt/Notch" Axis.

IF 5.8 3区 医学 Q1 DERMATOLOGY
Miao Zhen, Yongkang Zhu, Peng Wang, Xiaogang Liu, Junyou Zhu, Hengdeng Liu, Jingting Li, Jingling Zhao, Bin Shu
{"title":"HMGB1 Accelerates Wound Healing by Promoting the Differentiation of Epidermal Stem Cells via the \"HMGB1-TLR4-Wnt/Notch\" Axis.","authors":"Miao Zhen, Yongkang Zhu, Peng Wang, Xiaogang Liu, Junyou Zhu, Hengdeng Liu, Jingting Li, Jingling Zhao, Bin Shu","doi":"10.1089/wound.2023.0130","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Impairments in the differentiation and migratory capacity of epidermal stem cells (ESCs) are pivotal factors contributing to delayed wound healing. High mobility group box1 (HMGB1) has recently emerged as a potential target for tissue repair. Therefore, we aimed to investigate the role and molecular mechanisms of HMGB1 in ESCs during the wound-healing process. <b>Approach:</b> Initially, we examined the expression of HMGB1 and the differentiation of ESCs in normal skin, normal wounds and chronic wounds. Then, we assessed the ESC migration and differentiation, and the key markers in the Wnt/Notch signaling pathways, after treatment of HMGB1 and inhibitor, and the knockdown of toll-like receptor 4 (TLR4), using scratch assay, qPCR, western blotting, and immunofluorescence. Finally, we conducted mice models to analyze the healing rates and quality <i>in vivo</i>. <b>Results:</b> HMGB1 was decreased across all epidermal layers, and the differentiation of ESCs was hindered in diabetic foot ulcer. <i>In vitro</i>, HMGB1 enhanced both the migration and differentiation of ESCs while stimulating the expression of the Wnt/Notch pathway within ESCs. However, the downregulation of TLR4 negated these effects. Finally, our <i>in vivo</i> experiments provided evidence that HMGB1 facilitates wound healing and epidermis differentiation <i>via</i> TLR4 and Wnt/Notch signaling pathways. <b>Innovation:</b> This study innovatively introduces HMGB1 as a novel target for skin wound healing and elucidates its mechanisms of action. <b>Conclusions:</b> HMGB1 accelerated wound healing by promoting the differentiation of epidermal stem cells through the \"HMGB1-TLR4-Wnt/Notch\" axis, which reveals a new potential mechanism and target to expedite wound healing.</p>","PeriodicalId":7413,"journal":{"name":"Advances in wound care","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in wound care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/wound.2023.0130","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Impairments in the differentiation and migratory capacity of epidermal stem cells (ESCs) are pivotal factors contributing to delayed wound healing. High mobility group box1 (HMGB1) has recently emerged as a potential target for tissue repair. Therefore, we aimed to investigate the role and molecular mechanisms of HMGB1 in ESCs during the wound-healing process. Approach: Initially, we examined the expression of HMGB1 and the differentiation of ESCs in normal skin, normal wounds and chronic wounds. Then, we assessed the ESC migration and differentiation, and the key markers in the Wnt/Notch signaling pathways, after treatment of HMGB1 and inhibitor, and the knockdown of toll-like receptor 4 (TLR4), using scratch assay, qPCR, western blotting, and immunofluorescence. Finally, we conducted mice models to analyze the healing rates and quality in vivo. Results: HMGB1 was decreased across all epidermal layers, and the differentiation of ESCs was hindered in diabetic foot ulcer. In vitro, HMGB1 enhanced both the migration and differentiation of ESCs while stimulating the expression of the Wnt/Notch pathway within ESCs. However, the downregulation of TLR4 negated these effects. Finally, our in vivo experiments provided evidence that HMGB1 facilitates wound healing and epidermis differentiation via TLR4 and Wnt/Notch signaling pathways. Innovation: This study innovatively introduces HMGB1 as a novel target for skin wound healing and elucidates its mechanisms of action. Conclusions: HMGB1 accelerated wound healing by promoting the differentiation of epidermal stem cells through the "HMGB1-TLR4-Wnt/Notch" axis, which reveals a new potential mechanism and target to expedite wound healing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in wound care
Advances in wound care Medicine-Emergency Medicine
CiteScore
12.10
自引率
4.10%
发文量
62
期刊介绍: Advances in Wound Care rapidly shares research from bench to bedside, with wound care applications for burns, major trauma, blast injuries, surgery, and diabetic ulcers. The Journal provides a critical, peer-reviewed forum for the field of tissue injury and repair, with an emphasis on acute and chronic wounds. Advances in Wound Care explores novel research approaches and practices to deliver the latest scientific discoveries and developments. Advances in Wound Care coverage includes: Skin bioengineering, Skin and tissue regeneration, Acute, chronic, and complex wounds, Dressings, Anti-scar strategies, Inflammation, Burns and healing, Biofilm, Oxygen and angiogenesis, Critical limb ischemia, Military wound care, New devices and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信