Nanoencapsulation of creatine: Unlocking hydrophilic bioactive potential through double emulsification by solvent diffusion

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Karla Andrade Quintã Bordim, José Augusto Bordim Carvalho Júnior, Vitor Santos Ramos, Maria Inês Bruno Tavares
{"title":"Nanoencapsulation of creatine: Unlocking hydrophilic bioactive potential through double emulsification by solvent diffusion","authors":"Karla Andrade Quintã Bordim,&nbsp;José Augusto Bordim Carvalho Júnior,&nbsp;Vitor Santos Ramos,&nbsp;Maria Inês Bruno Tavares","doi":"10.1002/app.56411","DOIUrl":null,"url":null,"abstract":"<p>Nanotechnology has emerged as a pivotal tool in pharmaceutical research, driving the development of innovative techniques to enhance drug distribution within the body by finely tuning the biopharmaceutical properties of various drugs. Among these techniques, encapsulating biologically active substances in polymeric nanoparticles has garnered significant attention. However, achieving high encapsulation efficiency for hydrophilic molecules remains a formidable challenge, despite their growing importance in treating diverse diseases such as cancer, where nucleic acids, peptides, proteins, and smaller hydrophilic molecules are key players. While some studies have reported improvements in encapsulating hydrophilic drugs, notable examples, like the solid/oil/water ion-pairing method and the use of calcium phosphate, have shown promise in enhancing encapsulation efficiency for different drugs. Nonetheless, the challenge of preparing aqueous core nanoparticles capable of encapsulating a high percentage of water-soluble actives persists. Creatine monohydrate, a bioactive compound widely consumed by athletes for its role in increasing muscular phosphocreatine stores, presents an intriguing case. Despite its insolubility in organic media, creatine exhibits limited aqueous solubility, rendering it a suitable candidate for encapsulation in polymeric nanoparticles to improve its aqueous solubility and gastrointestinal absorption. In this study, we aim to produce polymeric nanoparticles containing creatine monohydrate utilizing the double emulsification (W/O/W) method. This promising and efficient approach holds the potential to significantly enhance the aqueous solubility and gastrointestinal absorption of creatine, thereby broadening its clinical application spectrum. Leveraging nanotechnology in this context offers an innovative and potentially impactful strategy to augment the therapeutic efficacy of creatine.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56411","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Nanotechnology has emerged as a pivotal tool in pharmaceutical research, driving the development of innovative techniques to enhance drug distribution within the body by finely tuning the biopharmaceutical properties of various drugs. Among these techniques, encapsulating biologically active substances in polymeric nanoparticles has garnered significant attention. However, achieving high encapsulation efficiency for hydrophilic molecules remains a formidable challenge, despite their growing importance in treating diverse diseases such as cancer, where nucleic acids, peptides, proteins, and smaller hydrophilic molecules are key players. While some studies have reported improvements in encapsulating hydrophilic drugs, notable examples, like the solid/oil/water ion-pairing method and the use of calcium phosphate, have shown promise in enhancing encapsulation efficiency for different drugs. Nonetheless, the challenge of preparing aqueous core nanoparticles capable of encapsulating a high percentage of water-soluble actives persists. Creatine monohydrate, a bioactive compound widely consumed by athletes for its role in increasing muscular phosphocreatine stores, presents an intriguing case. Despite its insolubility in organic media, creatine exhibits limited aqueous solubility, rendering it a suitable candidate for encapsulation in polymeric nanoparticles to improve its aqueous solubility and gastrointestinal absorption. In this study, we aim to produce polymeric nanoparticles containing creatine monohydrate utilizing the double emulsification (W/O/W) method. This promising and efficient approach holds the potential to significantly enhance the aqueous solubility and gastrointestinal absorption of creatine, thereby broadening its clinical application spectrum. Leveraging nanotechnology in this context offers an innovative and potentially impactful strategy to augment the therapeutic efficacy of creatine.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信