Mesoporous Biosilica Beads for Controlled Selenium Nanoparticle Delivery from Collagen-Chitosan Scaffolds: Promoting Bone Formation and Suppressing Prostate Cancer Growth
Kulwinder Kaur, Lucie Falgous, Nezar Kamal, David Caffrey, Brenton L. Cavanagh, Behlul Koc-Bilican, Murat Kaya, Igor Shvets, Caroline M. Curtin, Ciara M. Murphy
{"title":"Mesoporous Biosilica Beads for Controlled Selenium Nanoparticle Delivery from Collagen-Chitosan Scaffolds: Promoting Bone Formation and Suppressing Prostate Cancer Growth","authors":"Kulwinder Kaur, Lucie Falgous, Nezar Kamal, David Caffrey, Brenton L. Cavanagh, Behlul Koc-Bilican, Murat Kaya, Igor Shvets, Caroline M. Curtin, Ciara M. Murphy","doi":"10.1002/anbr.202400110","DOIUrl":null,"url":null,"abstract":"<p>The controlled delivery of selenium nanoparticles (Se-NPs) is promising for bone cancer treatment due to their dual benefits in bone regeneration and tumor inhibition, yet achieving an optimal dosing regimen remains challenging. Natural mesoporous biosilica (BS) beads have shown promise for drug delivery due to their microporous structure. This study explores incorporating BS beads into collagen-chitosan (Coll-CS) scaffolds, known for bone repair, to control Se-NP delivery. Two approaches are compared: loading Se-NPs into BS beads before integrating them into Coll-CS scaffolds versus directly loading Se-NPs into Coll-CS scaffolds. The scaffold properties, Se release kinetics, cytocompatibility, and effects on mesenchymal stem cells (MSCs) and prostate cancer cells (LNCaP) are evaluated. BS bead-loaded scaffolds provide controlled Se-NP release and enhanced mechanical properties compared to directly loaded scaffolds. Higher Se-NP concentrations in BS-loaded scaffolds effectively promote MSC osteogenic differentiation and mineralisation while inhibiting LNCaP cell viability. In contrast, low Se-NP concentrations not only induce early osteogenic differentiation but also promote cancer cell proliferation, underscoring the need for optimal Se-NP concentration and release. These findings suggest that BS bead-loaded Coll-CS scaffolds are a promising strategy for controlled Se-NP delivery, addressing the dual challenges of bone formation and cancer recurrence prevention in bone cancer treatment.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400110","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The controlled delivery of selenium nanoparticles (Se-NPs) is promising for bone cancer treatment due to their dual benefits in bone regeneration and tumor inhibition, yet achieving an optimal dosing regimen remains challenging. Natural mesoporous biosilica (BS) beads have shown promise for drug delivery due to their microporous structure. This study explores incorporating BS beads into collagen-chitosan (Coll-CS) scaffolds, known for bone repair, to control Se-NP delivery. Two approaches are compared: loading Se-NPs into BS beads before integrating them into Coll-CS scaffolds versus directly loading Se-NPs into Coll-CS scaffolds. The scaffold properties, Se release kinetics, cytocompatibility, and effects on mesenchymal stem cells (MSCs) and prostate cancer cells (LNCaP) are evaluated. BS bead-loaded scaffolds provide controlled Se-NP release and enhanced mechanical properties compared to directly loaded scaffolds. Higher Se-NP concentrations in BS-loaded scaffolds effectively promote MSC osteogenic differentiation and mineralisation while inhibiting LNCaP cell viability. In contrast, low Se-NP concentrations not only induce early osteogenic differentiation but also promote cancer cell proliferation, underscoring the need for optimal Se-NP concentration and release. These findings suggest that BS bead-loaded Coll-CS scaffolds are a promising strategy for controlled Se-NP delivery, addressing the dual challenges of bone formation and cancer recurrence prevention in bone cancer treatment.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.