Holomorphically conjugate polynomial automorphisms of C 2 $\mathbb {C}^2$ are polynomially conjugate

IF 0.8 3区 数学 Q2 MATHEMATICS
Serge Cantat, Romain Dujardin
{"title":"Holomorphically conjugate polynomial automorphisms of \n \n \n C\n 2\n \n $\\mathbb {C}^2$\n are polynomially conjugate","authors":"Serge Cantat,&nbsp;Romain Dujardin","doi":"10.1112/blms.13164","DOIUrl":null,"url":null,"abstract":"<p>We confirm a conjecture of Friedland and Milnor: if two polynomial automorphisms <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>∈</mo>\n <mi>Aut</mi>\n <mo>(</mo>\n <msubsup>\n <mi>A</mi>\n <mi>C</mi>\n <mn>2</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <annotation>$g\\in \\mathsf {Aut}(\\mathbb {A}^2_\\mathbf {C})$</annotation>\n </semantics></math> with dynamical degree greater than 1 are conjugate by some holomorphic diffeomorphism <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>:</mo>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\varphi \\colon \\mathbf {C}^2\\rightarrow \\mathbf {C}^2$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> is a polynomial automorphism; thus, <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> are conjugate inside <span></span><math>\n <semantics>\n <mrow>\n <mi>Aut</mi>\n <mo>(</mo>\n <msubsup>\n <mi>A</mi>\n <mi>C</mi>\n <mn>2</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathsf {Aut}(\\mathbb {A}^2_\\mathbf {C})$</annotation>\n </semantics></math>. We also discuss a number of variations on this result.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3745-3751"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13164","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13164","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We confirm a conjecture of Friedland and Milnor: if two polynomial automorphisms f $f$ and g Aut ( A C 2 ) $g\in \mathsf {Aut}(\mathbb {A}^2_\mathbf {C})$ with dynamical degree greater than 1 are conjugate by some holomorphic diffeomorphism φ : C 2 C 2 $\varphi \colon \mathbf {C}^2\rightarrow \mathbf {C}^2$ , then φ $\varphi$ is a polynomial automorphism; thus, f $f$ and g $g$ are conjugate inside Aut ( A C 2 ) $\mathsf {Aut}(\mathbb {A}^2_\mathbf {C})$ . We also discuss a number of variations on this result.

c2 $\mathbb {C}^2$的全纯共轭多项式自同构是多项式共轭的
我们证实弗里德兰和米尔诺的一个猜想:如果两个多项式自同构f $f$和g∈Aut (a2) $g\in \mathsf {Aut}(\mathbb {A}^2_\mathbf {C})$的动态度大于1是共轭的由某全纯微分同构φ:c2→c2 $\varphi \colon \mathbf {C}^2\rightarrow \mathbf {C}^2$,则φ $\varphi$是多项式自同构;因此,f $f$和g $g$在Aut (ac2) $\mathsf {Aut}(\mathbb {A}^2_\mathbf {C})$内共轭。我们还讨论了这个结果的一些变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信