{"title":"Holomorphically conjugate polynomial automorphisms of \n \n \n C\n 2\n \n $\\mathbb {C}^2$\n are polynomially conjugate","authors":"Serge Cantat, Romain Dujardin","doi":"10.1112/blms.13164","DOIUrl":null,"url":null,"abstract":"<p>We confirm a conjecture of Friedland and Milnor: if two polynomial automorphisms <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>∈</mo>\n <mi>Aut</mi>\n <mo>(</mo>\n <msubsup>\n <mi>A</mi>\n <mi>C</mi>\n <mn>2</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <annotation>$g\\in \\mathsf {Aut}(\\mathbb {A}^2_\\mathbf {C})$</annotation>\n </semantics></math> with dynamical degree greater than 1 are conjugate by some holomorphic diffeomorphism <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>:</mo>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\varphi \\colon \\mathbf {C}^2\\rightarrow \\mathbf {C}^2$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mi>φ</mi>\n <annotation>$\\varphi$</annotation>\n </semantics></math> is a polynomial automorphism; thus, <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> are conjugate inside <span></span><math>\n <semantics>\n <mrow>\n <mi>Aut</mi>\n <mo>(</mo>\n <msubsup>\n <mi>A</mi>\n <mi>C</mi>\n <mn>2</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathsf {Aut}(\\mathbb {A}^2_\\mathbf {C})$</annotation>\n </semantics></math>. We also discuss a number of variations on this result.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3745-3751"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13164","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13164","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We confirm a conjecture of Friedland and Milnor: if two polynomial automorphisms and with dynamical degree greater than 1 are conjugate by some holomorphic diffeomorphism , then is a polynomial automorphism; thus, and are conjugate inside . We also discuss a number of variations on this result.