A note on a Halmos problem

IF 0.8 3区 数学 Q2 MATHEMATICS
Maximiliano Contino, Eva A. Gallardo-Gutiérrez
{"title":"A note on a Halmos problem","authors":"Maximiliano Contino,&nbsp;Eva A. Gallardo-Gutiérrez","doi":"10.1112/blms.13159","DOIUrl":null,"url":null,"abstract":"<p>We address the existence of non-trivial closed invariant subspaces of operators <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> on Banach spaces whenever their square <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mn>2</mn>\n </msup>\n <annotation>$T^2$</annotation>\n </semantics></math> have or, more generally, whether there exists a polynomial <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mtext>deg</mtext>\n <mo>(</mo>\n <mi>p</mi>\n <mo>)</mo>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\mbox{deg}(p)\\geqslant 2$</annotation>\n </semantics></math> such that the lattice of invariant subspaces of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p(T)$</annotation>\n </semantics></math> is non-trivial. In the Hilbert space setting, the <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mn>2</mn>\n </msup>\n <annotation>$T^2$</annotation>\n </semantics></math>-problem was posed by Halmos in the seventies and in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to the <i>Invariant Subspace Problem</i>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3681-3688"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13159","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We address the existence of non-trivial closed invariant subspaces of operators T $T$ on Banach spaces whenever their square T 2 $T^2$ have or, more generally, whether there exists a polynomial p $p$ with deg ( p ) 2 $\mbox{deg}(p)\geqslant 2$ such that the lattice of invariant subspaces of p ( T ) $p(T)$ is non-trivial. In the Hilbert space setting, the T 2 $T^2$ -problem was posed by Halmos in the seventies and in 2007, Foias, Jung, Ko and Pearcy conjectured it could be equivalent to the Invariant Subspace Problem.

关于Halmos问题的说明
我们讨论了算子T $T$在Banach空间上的非平凡闭不变子空间的存在性,当它们的平方T 2 $T^2$具有,或者更一般地说,是否存在一个多项式p $p$与deg (p)小于2 $\mbox{deg}(p)\geqslant 2$使得p (T)的不变子空间的格$p(T)$是非平凡的。在希尔伯特空间设置中,t2 $T^2$ -问题是由Halmos在70年代提出的,2007年,Foias, Jung, Ko和Pearcy推测它可以等同于不变子空间问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信