{"title":"ODHEPDC: Optimal Trained Deep Hybrid Ensemble of Classifier for Plant Disease Classification With Improved Deep Fuzzy Clustering","authors":"Ruchi Mittal, Varun Malik, Geetanjali Singla, Amandeep Kaur, Manjinder Singh, Amit Mittal","doi":"10.1111/jph.13388","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Plant diseases are the major factors that affects the quality production as it affects or interrupts the plant's vital functions. The early detection of crop disease could assist farmers in implementing the right preventative measures at the right moment to eradicate it. The main goal of the ODHEPDC (Optimal Trained Deep Hybrid Ensemble of Classifier for Classification of Plant Disease) model is the classification of diseases leaf images. The primary step is to improve the input image by using the MF model to remove the noise. This is considered as the preprocessing step. Improved fuzzy clustering algorithm, leading to the identification of the regions, ROI as well as non-ROI. Next to this, the appropriate features are extracted to define the feature set that includes MPPT feature, PHOG feature, and MTP features as well. However, the curse of dimensionality is the greatest crisis in the classification problem, hence, improved feature level fusion is progressed, which is the simple concatenation of the extracted features. In this, the improved calculation of information gain ensures the reduction and fusion of feature set. The fused features are the inputs to ensemble classification model with the classifiers like CNN, RNN, and DBN classifiers, which gives the classified results. To boost up the performance of classification model, the Deep Maxout model in the ensemble is optimally trained by a new Bald Eagle Search Updated Pelican Optimization (BESUPO) Algorithm via optimal weights tuning as the model determines the final classification outcome. The validation results prove the disease classification performance via the given architecture than extant schemes.</p>\n </div>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":"172 6","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.13388","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant diseases are the major factors that affects the quality production as it affects or interrupts the plant's vital functions. The early detection of crop disease could assist farmers in implementing the right preventative measures at the right moment to eradicate it. The main goal of the ODHEPDC (Optimal Trained Deep Hybrid Ensemble of Classifier for Classification of Plant Disease) model is the classification of diseases leaf images. The primary step is to improve the input image by using the MF model to remove the noise. This is considered as the preprocessing step. Improved fuzzy clustering algorithm, leading to the identification of the regions, ROI as well as non-ROI. Next to this, the appropriate features are extracted to define the feature set that includes MPPT feature, PHOG feature, and MTP features as well. However, the curse of dimensionality is the greatest crisis in the classification problem, hence, improved feature level fusion is progressed, which is the simple concatenation of the extracted features. In this, the improved calculation of information gain ensures the reduction and fusion of feature set. The fused features are the inputs to ensemble classification model with the classifiers like CNN, RNN, and DBN classifiers, which gives the classified results. To boost up the performance of classification model, the Deep Maxout model in the ensemble is optimally trained by a new Bald Eagle Search Updated Pelican Optimization (BESUPO) Algorithm via optimal weights tuning as the model determines the final classification outcome. The validation results prove the disease classification performance via the given architecture than extant schemes.
期刊介绍:
Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays.
Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes.
Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.