Traffic Incident Duration Prediction: A Systematic Review of Techniques

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL
Artur Grigorev, Adriana-Simona Mihaita, Fang Chen
{"title":"Traffic Incident Duration Prediction: A Systematic Review of Techniques","authors":"Artur Grigorev,&nbsp;Adriana-Simona Mihaita,&nbsp;Fang Chen","doi":"10.1155/atr/3748345","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This systematic literature review investigates the application of machine learning (ML) techniques for predicting traffic incident durations, a crucial component of intelligent transportation systems (ITSs) aimed at mitigating congestion and enhancing environmental sustainability. Utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we systematically analyze literature that overviews models for incident duration prediction. Our review identifies that while traditional ML models like XGBoost and Random Forest are prevalent, significant potential exists for advanced methodologies such as bilevel and hybrid frameworks. Key challenges identified include the following: data quality issues, model interpretability, and the complexities associated with high-dimensional datasets. Future research directions proposed include the following: (1) development of data fusion models that integrate heterogeneous datasets of incident reports for enhanced predictive modeling; (2) utilization of natural language processing (NLP) to extract contextual information from textual incident reports; and (3) implementation of advanced ML pipelines that incorporate anomaly detection, hyperparameter optimization, and sophisticated feature selection techniques. The findings underscore the transformative potential of advanced ML methodologies in traffic incident management, contributing to the development of safer, more efficient, and environmentally sustainable transportation systems.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/3748345","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/3748345","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This systematic literature review investigates the application of machine learning (ML) techniques for predicting traffic incident durations, a crucial component of intelligent transportation systems (ITSs) aimed at mitigating congestion and enhancing environmental sustainability. Utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we systematically analyze literature that overviews models for incident duration prediction. Our review identifies that while traditional ML models like XGBoost and Random Forest are prevalent, significant potential exists for advanced methodologies such as bilevel and hybrid frameworks. Key challenges identified include the following: data quality issues, model interpretability, and the complexities associated with high-dimensional datasets. Future research directions proposed include the following: (1) development of data fusion models that integrate heterogeneous datasets of incident reports for enhanced predictive modeling; (2) utilization of natural language processing (NLP) to extract contextual information from textual incident reports; and (3) implementation of advanced ML pipelines that incorporate anomaly detection, hyperparameter optimization, and sophisticated feature selection techniques. The findings underscore the transformative potential of advanced ML methodologies in traffic incident management, contributing to the development of safer, more efficient, and environmentally sustainable transportation systems.

Abstract Image

交通事故持续时间预测:技术的系统回顾
这篇系统的文献综述研究了机器学习(ML)技术在预测交通事故持续时间方面的应用,这是智能交通系统(ITSs)的一个重要组成部分,旨在缓解拥堵和提高环境可持续性。利用系统评价和荟萃分析(PRISMA)方法的首选报告项目,我们系统地分析了概述事件持续时间预测模型的文献。我们的研究发现,虽然传统的机器学习模型(如XGBoost和Random Forest)很普遍,但先进的方法(如双层和混合框架)也存在巨大的潜力。确定的主要挑战包括以下方面:数据质量问题、模型可解释性以及与高维数据集相关的复杂性。未来的研究方向包括:(1)发展融合异构事件报告数据集的数据融合模型,增强预测建模能力;(2)利用自然语言处理(NLP)从文本事件报告中提取语境信息;(3)实现包含异常检测、超参数优化和复杂特征选择技术的高级ML管道。研究结果强调了先进的机器学习方法在交通事故管理中的变革潜力,有助于开发更安全、更高效和环境可持续的交通系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信