A New Method for Creating Structured High-Performance Current Collectors for Electrochemical Applications

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Eric A. Krall, Jesus Rivera, Marrisa Wood, Alexandra E. Overland, Raiyan A. Seede, Connor J. Rietema, Maira R. Cerón, Steven A. Hawks
{"title":"A New Method for Creating Structured High-Performance Current Collectors for Electrochemical Applications","authors":"Eric A. Krall,&nbsp;Jesus Rivera,&nbsp;Marrisa Wood,&nbsp;Alexandra E. Overland,&nbsp;Raiyan A. Seede,&nbsp;Connor J. Rietema,&nbsp;Maira R. Cerón,&nbsp;Steven A. Hawks","doi":"10.1002/adem.202401827","DOIUrl":null,"url":null,"abstract":"<p>A significant challenge in many electrochemical systems is finding a stable, high-performing current collector material that is mechanically robust, adaptable in form factor, and free of precious metals. Titanium electrodes are robust in many of these regards but exhibit poor charge transfer performance due to self-passivation. Herein, a new materials processing paradigm based on the titanium/titanium nitride (Ti/TiN) system which allows for robust, stable, and low-resistance current collectors of arbitrary form factor is presented. Specifically, a gas-nitriding process for 3D-printed titanium electrodes that results in a 20-fold improvement of charge transfer characteristics relative to the untreated material is outlined. The ability to utilize 3D-structured current collectors with a net 40-fold improvement in performance over nonstructured electrodes is further demonstrated. This novel approach to creating electrochemical current collectors requires minimal laboratory resources and can be widely adapted for a variety of applications, including desalination, electrolysis, energy storage, and basic research. The work described herein provides both a means for accelerating research and opens the door to hierarchical tuneability for enhanced performance.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401827","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A significant challenge in many electrochemical systems is finding a stable, high-performing current collector material that is mechanically robust, adaptable in form factor, and free of precious metals. Titanium electrodes are robust in many of these regards but exhibit poor charge transfer performance due to self-passivation. Herein, a new materials processing paradigm based on the titanium/titanium nitride (Ti/TiN) system which allows for robust, stable, and low-resistance current collectors of arbitrary form factor is presented. Specifically, a gas-nitriding process for 3D-printed titanium electrodes that results in a 20-fold improvement of charge transfer characteristics relative to the untreated material is outlined. The ability to utilize 3D-structured current collectors with a net 40-fold improvement in performance over nonstructured electrodes is further demonstrated. This novel approach to creating electrochemical current collectors requires minimal laboratory resources and can be widely adapted for a variety of applications, including desalination, electrolysis, energy storage, and basic research. The work described herein provides both a means for accelerating research and opens the door to hierarchical tuneability for enhanced performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信