Energetic Al-Coated 5,5′-Dinitro-3,3′-bi(1,2,4-triazole) Green Functionalized Cu Nanosheet Films for Ignition-Able Micro Devices

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yapeng Yao, Xiaodong Gou, Wei Liu*, Zihang Liang, Jiangbo Zhang and Zhongliang Ma, 
{"title":"Energetic Al-Coated 5,5′-Dinitro-3,3′-bi(1,2,4-triazole) Green Functionalized Cu Nanosheet Films for Ignition-Able Micro Devices","authors":"Yapeng Yao,&nbsp;Xiaodong Gou,&nbsp;Wei Liu*,&nbsp;Zihang Liang,&nbsp;Jiangbo Zhang and Zhongliang Ma,&nbsp;","doi":"10.1021/acsanm.4c0581410.1021/acsanm.4c05814","DOIUrl":null,"url":null,"abstract":"<p >Integrating energetic materials into microelectromechanical system (MEMS) to enhance their energy output characteristics has shown extensive potential across aerospace, defense, and civilian applications. Within this study, the MEMS compatible Cu/DNBT (DNBT = [5,5′-dinitro-3,3′-bi(1,2,4-triazole)]) and Cu/DNBT@nano-Al energetic films were successfully synthesized on the copper substrate using an electrochemical method and a drip coating method. The scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential thermal analyses (DTA), and a pulse laser ignition test were used to analyze the morphology, composition, thermal performance, and ignition properties of the prepared samples. The findings indicate that the prepared Cu/DNBT and Cu/DNBT@nano-Al energetic films exhibit a nanostructure, and their morphology can be effectively regulated via modifications to the deposition voltage, deposition time, and aluminum plating frequency. Furthermore, the energetic properties of Cu/DNBT@nano-Al films can be adjusted after the deposition of nano-Al. Their heat release, flame height and ignition duration can reach up to 1823.1 J·g<sup>–1</sup>, 13.5 mm, and 400 μs, respectively. These findings suggest that Cu/DNBT@nano-Al energetic films being a prime contender for initiating powders in MEMS pyrotechnics. In summary, this work offers valuable insights into the integration and application of energetic materials in MEMS ignition devices.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27698–27705 27698–27705"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05814","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating energetic materials into microelectromechanical system (MEMS) to enhance their energy output characteristics has shown extensive potential across aerospace, defense, and civilian applications. Within this study, the MEMS compatible Cu/DNBT (DNBT = [5,5′-dinitro-3,3′-bi(1,2,4-triazole)]) and Cu/DNBT@nano-Al energetic films were successfully synthesized on the copper substrate using an electrochemical method and a drip coating method. The scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential thermal analyses (DTA), and a pulse laser ignition test were used to analyze the morphology, composition, thermal performance, and ignition properties of the prepared samples. The findings indicate that the prepared Cu/DNBT and Cu/DNBT@nano-Al energetic films exhibit a nanostructure, and their morphology can be effectively regulated via modifications to the deposition voltage, deposition time, and aluminum plating frequency. Furthermore, the energetic properties of Cu/DNBT@nano-Al films can be adjusted after the deposition of nano-Al. Their heat release, flame height and ignition duration can reach up to 1823.1 J·g–1, 13.5 mm, and 400 μs, respectively. These findings suggest that Cu/DNBT@nano-Al energetic films being a prime contender for initiating powders in MEMS pyrotechnics. In summary, this work offers valuable insights into the integration and application of energetic materials in MEMS ignition devices.

Abstract Image

高能铝包覆的5,5′-二硝基-3,3′-双(1,2,4-三唑)绿色功能化Cu纳米片可点燃微器件
将含能材料集成到微机电系统(MEMS)中,以提高其能量输出特性,在航空航天、国防和民用领域显示出广泛的应用潜力。在本研究中,采用电化学方法和滴涂法在铜衬底上成功合成了MEMS兼容Cu/DNBT (DNBT =[5,5 ' -二硝基-3,3 ' -双(1,2,4-三唑)])和Cu/DNBT@nano-Al含能薄膜。采用扫描电镜(SEM)、x射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、差热分析(DTA)和脉冲激光点火测试对制备的样品进行形貌、成分、热性能和点火性能分析。结果表明,制备的Cu/DNBT和Cu/DNBT@nano-Al能膜具有纳米结构,通过改变沉积电压、沉积时间和镀铝频率可以有效地调节其形貌。此外,纳米al的沉积可以调节Cu/DNBT@nano-Al薄膜的能量性能。它们的放热量、火焰高度和点火时间分别达到1823.1 J·g-1、13.5 mm和400 μs。这些发现表明Cu/DNBT@nano-Al含能薄膜是MEMS烟火工艺中引发粉末的主要竞争者。总之,这项工作为含能材料在MEMS点火装置中的集成和应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信