Hypoxia-Responsive Self-Assembling Nanoparticles Based on an Amphiphilic Copolymer for Targeted Delivery of Tissue Plasminogen Activator in Acute Mesenteric Ischemia Therapy
IF 5.3 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Hypoxia-Responsive Self-Assembling Nanoparticles Based on an Amphiphilic Copolymer for Targeted Delivery of Tissue Plasminogen Activator in Acute Mesenteric Ischemia Therapy","authors":"Mingze Song, Qiongrong Zeng and Xingwei Ding, ","doi":"10.1021/acsanm.4c0540810.1021/acsanm.4c05408","DOIUrl":null,"url":null,"abstract":"<p >Acute mesenteric ischemia (AMI) is a life-threatening disease characterized by the sudden loss of blood flow to the small intestine, leading to ischemia and potentially fatal intestinal necrosis if not promptly addressed. Current treatment protocols prioritize endovascular thrombolysis with a tissue plasminogen activator (tPA) as the first-line intervention. However, the efficacy of tPA is limited by its rapid inactivation in the bloodstream and associated risks of hemorrhagic complications from excessive dosing. Herein, we explored a hypoxia-responsive, cyclic arginyl-glycyl-aspartic acid (cRGD) peptide-decorated amphiphilic copolymer composed of polyethylene glycol (PEG) and poly(propylene glycol)bis(2-aminopropyl ether) (PPG), linked by an azo bond, named cRGD-PEG-azo-PPG (cPaP), which self-assembled to load tPA effectively for AMI therapy. Our results demonstrated that tPA-loaded cPaP nanoparticles can precisely target thrombus sites by cRGD peptide and respond to the hypoxic microenvironment to release the drug by hypoxia-responsive azo bond, significantly improving thrombolytic outcomes <i>in vitro</i> and <i>in vivo</i>. This study demonstrates the potential of utilizing biochemical and environmental triggers for targeted delivery of tPA, significantly improving the safety and efficacy of treatments for thromboembolic disease.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27400–27407 27400–27407"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05408","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute mesenteric ischemia (AMI) is a life-threatening disease characterized by the sudden loss of blood flow to the small intestine, leading to ischemia and potentially fatal intestinal necrosis if not promptly addressed. Current treatment protocols prioritize endovascular thrombolysis with a tissue plasminogen activator (tPA) as the first-line intervention. However, the efficacy of tPA is limited by its rapid inactivation in the bloodstream and associated risks of hemorrhagic complications from excessive dosing. Herein, we explored a hypoxia-responsive, cyclic arginyl-glycyl-aspartic acid (cRGD) peptide-decorated amphiphilic copolymer composed of polyethylene glycol (PEG) and poly(propylene glycol)bis(2-aminopropyl ether) (PPG), linked by an azo bond, named cRGD-PEG-azo-PPG (cPaP), which self-assembled to load tPA effectively for AMI therapy. Our results demonstrated that tPA-loaded cPaP nanoparticles can precisely target thrombus sites by cRGD peptide and respond to the hypoxic microenvironment to release the drug by hypoxia-responsive azo bond, significantly improving thrombolytic outcomes in vitro and in vivo. This study demonstrates the potential of utilizing biochemical and environmental triggers for targeted delivery of tPA, significantly improving the safety and efficacy of treatments for thromboembolic disease.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.