Shiyu Lu, Shuai Zheng, Qin Li, Mengqi Wang, Nan Mao, Jiani Li, Jinxin Liu*, Jinyou Lin* and Yuqing Liu*,
{"title":"Flexible Silk Fibroin-Based Triboelectric Nanogenerators with Thermal Management Capabilities for Temperature Regulation and Self-Powered Monitoring","authors":"Shiyu Lu, Shuai Zheng, Qin Li, Mengqi Wang, Nan Mao, Jiani Li, Jinxin Liu*, Jinyou Lin* and Yuqing Liu*, ","doi":"10.1021/acs.nanolett.4c0526710.1021/acs.nanolett.4c05267","DOIUrl":null,"url":null,"abstract":"<p >Flexible triboelectric nanogenerators (TENGs) are highly advantageous for human-centered monitoring due to their self-sustaining energy and high output performance. However, temperature fluctuations that limit thermal comfort have hindered their practical advancement. In this study, flexible titanium dioxide-silk fibroin@phase change microcapsule nanofiber films (TiO<sub>2</sub>-SF@PCM NFs) were successfully developed using an efficient electro-blown spinning (EBS) technique, with exceptional triboelectric output and superior temperature regulation capabilities. Our design achieved cooling effects of approximately 10 °C and provided thermal insulation of about 2.2 °C. Notably, applying the TiO<sub>2</sub>-SF@PCM NFs to a model car produced an impressive cooling effect of 22 °C. Furthermore, a single-electrode triboelectric sensor based on TiO<sub>2</sub>-SF@PCM NFs achieved a peak output power of ∼272 μW/m<sup>2</sup> and exceptional stability over 1000 output cycles. This study presents a promising strategy for the scalable production of flexible composite nanofiber films, effective in both temperature regulation and self-powered monitoring, highlighting their potential for use as thermal comfort sensors.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 49","pages":"15933–15942 15933–15942"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05267","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible triboelectric nanogenerators (TENGs) are highly advantageous for human-centered monitoring due to their self-sustaining energy and high output performance. However, temperature fluctuations that limit thermal comfort have hindered their practical advancement. In this study, flexible titanium dioxide-silk fibroin@phase change microcapsule nanofiber films (TiO2-SF@PCM NFs) were successfully developed using an efficient electro-blown spinning (EBS) technique, with exceptional triboelectric output and superior temperature regulation capabilities. Our design achieved cooling effects of approximately 10 °C and provided thermal insulation of about 2.2 °C. Notably, applying the TiO2-SF@PCM NFs to a model car produced an impressive cooling effect of 22 °C. Furthermore, a single-electrode triboelectric sensor based on TiO2-SF@PCM NFs achieved a peak output power of ∼272 μW/m2 and exceptional stability over 1000 output cycles. This study presents a promising strategy for the scalable production of flexible composite nanofiber films, effective in both temperature regulation and self-powered monitoring, highlighting their potential for use as thermal comfort sensors.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.