Mohammad Reza Yousefshahi, Mahdi Cheraghi, Tahereh Ghasemi, Abdollah Neshat*, Vaclav Eigner, Michal Dusek, Mehrnaz Amjadi and Shiva Akbari-Birgani,
{"title":"N-Heterocyclic Carbene-Au(I)-Phosphine Complexes: Characterization, Theoretical Structure Analysis, and Anti-Cancer Properties","authors":"Mohammad Reza Yousefshahi, Mahdi Cheraghi, Tahereh Ghasemi, Abdollah Neshat*, Vaclav Eigner, Michal Dusek, Mehrnaz Amjadi and Shiva Akbari-Birgani, ","doi":"10.1021/acs.organomet.4c0040510.1021/acs.organomet.4c00405","DOIUrl":null,"url":null,"abstract":"<p >Derivatization of (NHC)Au–Cl with monodentate and bidentate phosphine donors, such as PPh<sub>2</sub>Py, PPh<sub>3</sub>, PCy<sub>3</sub>, and dppf, produced heteroleptic mononuclear and binuclear Au(I) complexes. The order of mixing reactants and the types of solvents used play crucial roles in obtaining a pure product. In the single-crystal X-ray diffraction analysis of complexes <b>1</b>, <b>2</b>, and <b>4</b>, the Au(I) centers exhibited linear geometry. Advanced computational analysis of these complexes using density functional methods provided insights into the nature of electronic transitions, noncovalent interactions, and fragmental bonding contributions. Complexes <b>1</b>–<b>4</b> were selected for biological activity studies, and their in vitro cellular tests were conducted on the human cancerous breast cell line MCF-7, with bimetallic complex <b>4</b> showing the lowest IC<sub>50</sub> value of 63 nM and demonstrating the highest inhibitory effect on cell proliferation.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"43 23","pages":"3031–3042 3031–3042"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organometallics","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.organomet.4c00405","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Derivatization of (NHC)Au–Cl with monodentate and bidentate phosphine donors, such as PPh2Py, PPh3, PCy3, and dppf, produced heteroleptic mononuclear and binuclear Au(I) complexes. The order of mixing reactants and the types of solvents used play crucial roles in obtaining a pure product. In the single-crystal X-ray diffraction analysis of complexes 1, 2, and 4, the Au(I) centers exhibited linear geometry. Advanced computational analysis of these complexes using density functional methods provided insights into the nature of electronic transitions, noncovalent interactions, and fragmental bonding contributions. Complexes 1–4 were selected for biological activity studies, and their in vitro cellular tests were conducted on the human cancerous breast cell line MCF-7, with bimetallic complex 4 showing the lowest IC50 value of 63 nM and demonstrating the highest inhibitory effect on cell proliferation.
期刊介绍:
Organometallics is the flagship journal of organometallic chemistry and records progress in one of the most active fields of science, bridging organic and inorganic chemistry. The journal publishes Articles, Communications, Reviews, and Tutorials (instructional overviews) that depict research on the synthesis, structure, bonding, chemical reactivity, and reaction mechanisms for a variety of applications, including catalyst design and catalytic processes; main-group, transition-metal, and lanthanide and actinide metal chemistry; synthetic aspects of polymer science and materials science; and bioorganometallic chemistry.