Rational Design of Self-Reporting Polymersomes for the Controlled Release of Sulfur Dioxide

IF 5.1 Q1 POLYMER SCIENCE
Zhezhe Li, Yue Zhang, Suzhen Wang, Yihan Wu and Hailong Che*, 
{"title":"Rational Design of Self-Reporting Polymersomes for the Controlled Release of Sulfur Dioxide","authors":"Zhezhe Li,&nbsp;Yue Zhang,&nbsp;Suzhen Wang,&nbsp;Yihan Wu and Hailong Che*,&nbsp;","doi":"10.1021/acsmacrolett.4c0068710.1021/acsmacrolett.4c00687","DOIUrl":null,"url":null,"abstract":"<p >As a new member of the gaseous regulators, sulfur dioxide (SO<sub>2</sub>) plays a crucial role in many biological activities. Recent studies have shown that SO<sub>2</sub> is capable of inducing cancer cell apoptosis by regulating intracellular reactive oxygen species (ROS), allowing SO<sub>2</sub> to serve as an efficient therapeutic agent. Although various polymer-based platforms have presented great potential for the controlled release of SO<sub>2</sub>, most of the systems are incapable of monitoring the intracellular generation of SO<sub>2</sub>. In this work we present the rational design of SO<sub>2</sub>-releasing biodegradable polymersomes, accompanied by a self-reporting property. The polymersome consists of a hydrophilic block of poly(ethylene glycol) (PEG) and a hydrophobic segment of poly(trimethylene carbonate) (PTMC)-based SO<sub>2</sub> donors. The polymersomes not only exhibit good SO<sub>2</sub>-releasing performance upon treatment with glutathione (GSH), but can also regulate the fluorescence change of the system, offering a good platform for real-time monitoring of the intracellular production of SO<sub>2</sub>. Significantly, the <i>in vitro</i> and <i>in vivo</i> studies indicate the potential for exploitation of these polymersomes as antitumor agents. We expect that incorporating both the SO<sub>2</sub>-releasing capacity and self-reporting feature within a polymersome system will provide a unique opportunity for the development of intelligent gas nanovehicles.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"13 12","pages":"1691–1697 1691–1697"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As a new member of the gaseous regulators, sulfur dioxide (SO2) plays a crucial role in many biological activities. Recent studies have shown that SO2 is capable of inducing cancer cell apoptosis by regulating intracellular reactive oxygen species (ROS), allowing SO2 to serve as an efficient therapeutic agent. Although various polymer-based platforms have presented great potential for the controlled release of SO2, most of the systems are incapable of monitoring the intracellular generation of SO2. In this work we present the rational design of SO2-releasing biodegradable polymersomes, accompanied by a self-reporting property. The polymersome consists of a hydrophilic block of poly(ethylene glycol) (PEG) and a hydrophobic segment of poly(trimethylene carbonate) (PTMC)-based SO2 donors. The polymersomes not only exhibit good SO2-releasing performance upon treatment with glutathione (GSH), but can also regulate the fluorescence change of the system, offering a good platform for real-time monitoring of the intracellular production of SO2. Significantly, the in vitro and in vivo studies indicate the potential for exploitation of these polymersomes as antitumor agents. We expect that incorporating both the SO2-releasing capacity and self-reporting feature within a polymersome system will provide a unique opportunity for the development of intelligent gas nanovehicles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信