Otto Cranwell Schaeper, Lesley Spencer, Dominic Scognamiglio, Waleed El-Sayed, Benjamin Whitefield, Jake Horder, Nathan Coste, Paul Barclay, Milos Toth, Anastasiia Zalogina* and Igor Aharonovich*,
{"title":"Double Etch Method for the Fabrication of Nanophotonic Devices from van der Waals Materials","authors":"Otto Cranwell Schaeper, Lesley Spencer, Dominic Scognamiglio, Waleed El-Sayed, Benjamin Whitefield, Jake Horder, Nathan Coste, Paul Barclay, Milos Toth, Anastasiia Zalogina* and Igor Aharonovich*, ","doi":"10.1021/acsphotonics.4c0211510.1021/acsphotonics.4c02115","DOIUrl":null,"url":null,"abstract":"<p >The integration of van der Waals (vdW) materials into photonic devices has laid out a foundation for many new quantum and optoelectronic applications. Despite tremendous progress in the nanofabrication of photonic building blocks from vdW crystals, there are still limitations, specifically with large-area devices and masking. Here, we focus on hexagonal boron nitride (hBN) as a vdW material and present a double etch method that overcomes problems associated with methods that employ metallic films and resist-based films for masking. Efficacy of the developed protocol is demonstrated by designing and fabricating a set of functional photonic components─including waveguides, ring resonators, and photonic crystal cavities. The functionality of the fabricated structures is demonstrated through optical characterization over several key spectral ranges. These include the near-infrared and blue ranges, where the hBN boron vacancy (V<sub>B</sub><sup>–</sup>) spin defects and the coherent B center quantum emitters emit, respectively. The double etch method enables fabrication of high-quality factor optical cavities and constitutes a promising pathway toward on-chip integration of vdW materials.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"11 12","pages":"5446–5452 5446–5452"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c02115","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of van der Waals (vdW) materials into photonic devices has laid out a foundation for many new quantum and optoelectronic applications. Despite tremendous progress in the nanofabrication of photonic building blocks from vdW crystals, there are still limitations, specifically with large-area devices and masking. Here, we focus on hexagonal boron nitride (hBN) as a vdW material and present a double etch method that overcomes problems associated with methods that employ metallic films and resist-based films for masking. Efficacy of the developed protocol is demonstrated by designing and fabricating a set of functional photonic components─including waveguides, ring resonators, and photonic crystal cavities. The functionality of the fabricated structures is demonstrated through optical characterization over several key spectral ranges. These include the near-infrared and blue ranges, where the hBN boron vacancy (VB–) spin defects and the coherent B center quantum emitters emit, respectively. The double etch method enables fabrication of high-quality factor optical cavities and constitutes a promising pathway toward on-chip integration of vdW materials.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.