Jazmín Cortez-González, Rodolfo Murrieta-Dueñas*, Carlos Enrique Alvarado-Rodríguez, Juan Gabriel Segovia-Hernández, Salvador Hernández and Roberto Gutiérrez-Guerra,
{"title":"New Approach Lagrangian for Numerical Analysis Within L-V One Equilibrium Stage of a Distillation Column Using the SPH Method","authors":"Jazmín Cortez-González, Rodolfo Murrieta-Dueñas*, Carlos Enrique Alvarado-Rodríguez, Juan Gabriel Segovia-Hernández, Salvador Hernández and Roberto Gutiérrez-Guerra, ","doi":"10.1021/acs.iecr.4c0331310.1021/acs.iecr.4c03313","DOIUrl":null,"url":null,"abstract":"<p >This paper presents a numerical analysis of liquid–vapor equilibrium in a sieve tray of a distillation column using the Smoothed Particle Hydrodynamics (SPH) method. This Lagrangian approach provides a comprehensive understanding of the hydrodynamics, heat transfer, and liquid–vapor interactions within the tray, considering variations in deck area (85%, 90%, and 95%). The study examines flow patterns, flow regimes, weeping phenomena, and heat transfer within the tray. Results indicate that with a reduced deck area, the bubble regime predominates, leading to higher weeping rates and lower temperature uniformity between phases. Conversely, increasing the deck area to 90% or 95% shifts the regime to steam jet and spray, reduces weeping, and enhances phase interaction, thereby improving heat transfer and equilibrium stage efficiency. The study also highlights the effectiveness of the SPH method in simulating complex flow behavior within sieve trays.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 50","pages":"21974–21990 21974–21990"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c03313","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a numerical analysis of liquid–vapor equilibrium in a sieve tray of a distillation column using the Smoothed Particle Hydrodynamics (SPH) method. This Lagrangian approach provides a comprehensive understanding of the hydrodynamics, heat transfer, and liquid–vapor interactions within the tray, considering variations in deck area (85%, 90%, and 95%). The study examines flow patterns, flow regimes, weeping phenomena, and heat transfer within the tray. Results indicate that with a reduced deck area, the bubble regime predominates, leading to higher weeping rates and lower temperature uniformity between phases. Conversely, increasing the deck area to 90% or 95% shifts the regime to steam jet and spray, reduces weeping, and enhances phase interaction, thereby improving heat transfer and equilibrium stage efficiency. The study also highlights the effectiveness of the SPH method in simulating complex flow behavior within sieve trays.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.