Subsequent Reaction of CH2(1A) with N2 Molecule as a Potentially Important Source of HCN in the Atmosphere of Titan: Studies by Quantum-Chemical and Statistical Rate Theories
{"title":"Subsequent Reaction of CH2(1A) with N2 Molecule as a Potentially Important Source of HCN in the Atmosphere of Titan: Studies by Quantum-Chemical and Statistical Rate Theories","authors":"Vahid Saheb*, ","doi":"10.1021/acsearthspacechem.4c0021310.1021/acsearthspacechem.4c00213","DOIUrl":null,"url":null,"abstract":"<p >In this theoretical research, the possibility of the formation of the significant prebiotic hydrogen cyanide molecule and other important species in Titan’s atmosphere through the subsequent reactions of singlet methylene species, <sup>1</sup>CH<sub>2</sub>, with the N<sub>2</sub> molecule is investigated. The stationary points geometries and energies of species involved in the studied reaction are calculated by high-level quantum-chemical methods such as W1RO and CCSDT(Q) methods. Next, the rate coefficients for the formation of products are computed by sophisticated statistical rate theories including RRKM and VRC-TST. It is inferred from a previous theoretical study that CH<sub>2</sub>NN is produced predominantly from the reaction of <sup>1</sup>CH<sub>2</sub> with N<sub>2</sub> in the atmosphere of Titan [<contrib-group><span>Xu, S.</span>; <span>Lin, M. C.</span></contrib-group> <cite><i>J. Phys. Chem. A</i></cite> <span>2010</span>, <em>114</em>, 5195–5204]. The reactive CH<sub>2</sub>NN molecules react with other atmospheric species like <sup>1</sup>CH<sub>2</sub> to produce new species. According to the present study, <sup>1</sup>CH<sub>2</sub> species add to CH<sub>2</sub>NN molecules through relatively fast barrierless processes to produce some chemically activated intermediates. These intermediates rapidly decompose to yield 2 NCH<sub>2</sub>, HCN + CH<sub>2</sub>NH, and C<sub>2</sub>H<sub>4</sub> + N<sub>2</sub> products. The calculated data reveal that HCN and C<sub>2</sub>H<sub>4</sub> are efficiently produced from the subsequent reaction of <sup>1</sup>CH<sub>2</sub> with N<sub>2</sub> molecules in the atmosphere of Titan. The following rate constant expressions are suggested for the computed rate coefficients for the production of 2 NCH<sub>2</sub> (<i>k</i><sub>1</sub>), HCN + CH<sub>2</sub>NH (<i>k</i><sub>2</sub>), and C<sub>2</sub>H<sub>4</sub> + N<sub>2</sub> (<i>k</i><sub>3</sub>) from <sup>1</sup>CH<sub>2</sub> + CH<sub>2</sub>NN reaction over the temperature range 200–700 K: <i>k</i><sub>1</sub> = 5.48 × 10<sup>–10</sup> (T/300)<sup>0.258</sup> exp (255/T) <i>k</i><sub>2</sub> = 1.15 × 10<sup>–14</sup> (T/300)<sup>0.901</sup> exp (355/T) <i>k</i><sub>3</sub> = 3.10 × 10<sup>–10</sup> (T/300)<sup>−0.428</sup> exp (130/T).</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"8 12","pages":"2474–2482 2474–2482"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00213","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this theoretical research, the possibility of the formation of the significant prebiotic hydrogen cyanide molecule and other important species in Titan’s atmosphere through the subsequent reactions of singlet methylene species, 1CH2, with the N2 molecule is investigated. The stationary points geometries and energies of species involved in the studied reaction are calculated by high-level quantum-chemical methods such as W1RO and CCSDT(Q) methods. Next, the rate coefficients for the formation of products are computed by sophisticated statistical rate theories including RRKM and VRC-TST. It is inferred from a previous theoretical study that CH2NN is produced predominantly from the reaction of 1CH2 with N2 in the atmosphere of Titan [Xu, S.; Lin, M. C.J. Phys. Chem. A2010, 114, 5195–5204]. The reactive CH2NN molecules react with other atmospheric species like 1CH2 to produce new species. According to the present study, 1CH2 species add to CH2NN molecules through relatively fast barrierless processes to produce some chemically activated intermediates. These intermediates rapidly decompose to yield 2 NCH2, HCN + CH2NH, and C2H4 + N2 products. The calculated data reveal that HCN and C2H4 are efficiently produced from the subsequent reaction of 1CH2 with N2 molecules in the atmosphere of Titan. The following rate constant expressions are suggested for the computed rate coefficients for the production of 2 NCH2 (k1), HCN + CH2NH (k2), and C2H4 + N2 (k3) from 1CH2 + CH2NN reaction over the temperature range 200–700 K: k1 = 5.48 × 10–10 (T/300)0.258 exp (255/T) k2 = 1.15 × 10–14 (T/300)0.901 exp (355/T) k3 = 3.10 × 10–10 (T/300)−0.428 exp (130/T).
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.