Machine Learning Algorithm to Predict Methane Adsorption Capacity of Coal

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS
Wenshuo Li, Wei Li*, Andreas Busch, Liang Wang, Ferian Anggara and Shilong Yang, 
{"title":"Machine Learning Algorithm to Predict Methane Adsorption Capacity of Coal","authors":"Wenshuo Li,&nbsp;Wei Li*,&nbsp;Andreas Busch,&nbsp;Liang Wang,&nbsp;Ferian Anggara and Shilong Yang,&nbsp;","doi":"10.1021/acs.energyfuels.4c0490610.1021/acs.energyfuels.4c04906","DOIUrl":null,"url":null,"abstract":"<p >Accurately predicting methane adsorption capacity in coal is crucial for assessing coalbed methane resources and ensuring safe extraction. Conventional methane isotherm adsorption experiments often suffer from human error and experimental artifacts, leading to inaccurate and poorly reproducible outcomes. Furthermore, they are time-consuming to conduct, requiring specific and well calibrated experimental equipment. In this paper, a Random Forest (RF) algorithm is introduced to improve the accuracy and reliability of methane adsorption capacity prediction. Approximately 200 sets of experimental data, including parameters such as experimental temperature, equilibrium pressure, moisture, ash content, and volatile matter of coal samples, were collected and analyzed to establish a prediction model based on the RF algorithm. The robustness and reliability of the model were validated using K-Fold cross-validation and hyperparameter optimization. The results indicate that the Random Forest algorithm performs exceptionally well in predicting methane adsorption capacity, with optimal values for mean squared error (MSE) and the coefficient of determination (<i>R</i><sup>2</sup>), demonstrating a high correlation between predicted and actual values. Machine learning algorithms are innovatively combined with traditional experimental methods in this study. By training the model using large data sets, issues of error and reproducibility in traditional experiments are addressed, improving experimental efficiency and providing a more reliable method for evaluating coalbed methane resources. To some extent, the method can replace traditional methane isotherm adsorption experiments in coal, improving prediction accuracy and efficiency and demonstrating promising prospects for wide application.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"38 24","pages":"23422–23432 23422–23432"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c04906","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting methane adsorption capacity in coal is crucial for assessing coalbed methane resources and ensuring safe extraction. Conventional methane isotherm adsorption experiments often suffer from human error and experimental artifacts, leading to inaccurate and poorly reproducible outcomes. Furthermore, they are time-consuming to conduct, requiring specific and well calibrated experimental equipment. In this paper, a Random Forest (RF) algorithm is introduced to improve the accuracy and reliability of methane adsorption capacity prediction. Approximately 200 sets of experimental data, including parameters such as experimental temperature, equilibrium pressure, moisture, ash content, and volatile matter of coal samples, were collected and analyzed to establish a prediction model based on the RF algorithm. The robustness and reliability of the model were validated using K-Fold cross-validation and hyperparameter optimization. The results indicate that the Random Forest algorithm performs exceptionally well in predicting methane adsorption capacity, with optimal values for mean squared error (MSE) and the coefficient of determination (R2), demonstrating a high correlation between predicted and actual values. Machine learning algorithms are innovatively combined with traditional experimental methods in this study. By training the model using large data sets, issues of error and reproducibility in traditional experiments are addressed, improving experimental efficiency and providing a more reliable method for evaluating coalbed methane resources. To some extent, the method can replace traditional methane isotherm adsorption experiments in coal, improving prediction accuracy and efficiency and demonstrating promising prospects for wide application.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信