Phase Behavior and Compression Factors of Ultradeep Condensate and Dry Gas Reservoir under High Temperature and Pressure: Experiment and Calculation

IF 2 3区 工程技术 Q3 CHEMISTRY, MULTIDISCIPLINARY
Yu Zhang, Weifeng Lyu*, Dongbo He*, Ke Zhang, Ao Li, Changyu Sun and Guangjin Chen*, 
{"title":"Phase Behavior and Compression Factors of Ultradeep Condensate and Dry Gas Reservoir under High Temperature and Pressure: Experiment and Calculation","authors":"Yu Zhang,&nbsp;Weifeng Lyu*,&nbsp;Dongbo He*,&nbsp;Ke Zhang,&nbsp;Ao Li,&nbsp;Changyu Sun and Guangjin Chen*,&nbsp;","doi":"10.1021/acs.jced.4c0046010.1021/acs.jced.4c00460","DOIUrl":null,"url":null,"abstract":"<p >The exploration and development of ultradeep gas reservoirs have advanced significantly over the past 10 years, making these resources a crucial component of proved reserves. Understanding the phase behavior of reservoir fluids under ultradeep conditions is essential for designing and optimizing development schemes, especially given the extreme temperatures and pressures. However, existing empirical correlations and thermodynamic models often fall short of accuracy under these ultrahigh-pressure conditions. In this study, three ultradeep gas samples were analyzed using constant-composition expansion experiments. The compression factors and phase behavior properties at five groups of reservoir temperatures were obtained, with the highest pressure reaching 146 MPa. The experimental results show that the dew-point pressure and maximum retrograded liquid amount decrease with increasing temperature, while the compression factors increase with pressure. Meanwhile, a thermodynamic model based on the Soave–Redlich–Kwong equation of state was developed to precisely describe the compression factor. The capabilities of four empirical correlations and the Groupe Européen de Recherches Gazières model were investigated and compared. The results show that the improved thermodynamic model in this work demonstrated superior accuracy under ultradeep conditions, reducing the average absolute deviations for compression factors from 2.42% with the original equation of state to 0.52%.</p>","PeriodicalId":42,"journal":{"name":"Journal of Chemical & Engineering Data","volume":"69 12","pages":"4410–4419 4410–4419"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical & Engineering Data","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jced.4c00460","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration and development of ultradeep gas reservoirs have advanced significantly over the past 10 years, making these resources a crucial component of proved reserves. Understanding the phase behavior of reservoir fluids under ultradeep conditions is essential for designing and optimizing development schemes, especially given the extreme temperatures and pressures. However, existing empirical correlations and thermodynamic models often fall short of accuracy under these ultrahigh-pressure conditions. In this study, three ultradeep gas samples were analyzed using constant-composition expansion experiments. The compression factors and phase behavior properties at five groups of reservoir temperatures were obtained, with the highest pressure reaching 146 MPa. The experimental results show that the dew-point pressure and maximum retrograded liquid amount decrease with increasing temperature, while the compression factors increase with pressure. Meanwhile, a thermodynamic model based on the Soave–Redlich–Kwong equation of state was developed to precisely describe the compression factor. The capabilities of four empirical correlations and the Groupe Européen de Recherches Gazières model were investigated and compared. The results show that the improved thermodynamic model in this work demonstrated superior accuracy under ultradeep conditions, reducing the average absolute deviations for compression factors from 2.42% with the original equation of state to 0.52%.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical & Engineering Data
Journal of Chemical & Engineering Data 工程技术-工程:化工
CiteScore
5.20
自引率
19.20%
发文量
324
审稿时长
2.2 months
期刊介绍: The Journal of Chemical & Engineering Data is a monthly journal devoted to the publication of data obtained from both experiment and computation, which are viewed as complementary. It is the only American Chemical Society journal primarily concerned with articles containing data on the phase behavior and the physical, thermodynamic, and transport properties of well-defined materials, including complex mixtures of known compositions. While environmental and biological samples are of interest, their compositions must be known and reproducible. As a result, adsorption on natural product materials does not generally fit within the scope of Journal of Chemical & Engineering Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信