BiVO4 Polaron-Hopping State-Induced Low-Bias Spintronic Water Splitting Device

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS
Yi-Sheng Lai*, Hung-Yu Shen and Cheng-Ju Yang, 
{"title":"BiVO4 Polaron-Hopping State-Induced Low-Bias Spintronic Water Splitting Device","authors":"Yi-Sheng Lai*,&nbsp;Hung-Yu Shen and Cheng-Ju Yang,&nbsp;","doi":"10.1021/acs.energyfuels.4c0452810.1021/acs.energyfuels.4c04528","DOIUrl":null,"url":null,"abstract":"<p >Both n-type and p-type BiVO<sub>4</sub> photoelectrodes demonstrate a high performance in water splitting devices, with an ultrahigh solar to hydrogen energy conversion performance as high as 6.77 and 7.51%, respectively. The external quantum efficiencies of the n-type and p-type BiVO<sub>4</sub> photoelectrodes under 520 nm laser irradiation are 54.52 and 48.38%, respectively. Besides, over 49 L of hydrogen gases evolved from the n-type BiVO<sub>4</sub> photoelectrode and over 32 L of hydrogen gases from the p-type BiVO<sub>4</sub> photoelectrode. With the polaron surface state and the polaron-hopping energy level, the p-type BiVO<sub>4</sub> demonstrated over 50% spin polarization rate since ℏ/–ℏ angular momentum-modulated circular polarization serves as the spintronic excitation light source. The hole-trapping Fermi level of the p-type BiVO<sub>4</sub> affords the water splitting devices a shorter path for hole transportation than the n-type BiVO<sub>4</sub>.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"38 24","pages":"23677–23684 23677–23684"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c04528","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Both n-type and p-type BiVO4 photoelectrodes demonstrate a high performance in water splitting devices, with an ultrahigh solar to hydrogen energy conversion performance as high as 6.77 and 7.51%, respectively. The external quantum efficiencies of the n-type and p-type BiVO4 photoelectrodes under 520 nm laser irradiation are 54.52 and 48.38%, respectively. Besides, over 49 L of hydrogen gases evolved from the n-type BiVO4 photoelectrode and over 32 L of hydrogen gases from the p-type BiVO4 photoelectrode. With the polaron surface state and the polaron-hopping energy level, the p-type BiVO4 demonstrated over 50% spin polarization rate since ℏ/–ℏ angular momentum-modulated circular polarization serves as the spintronic excitation light source. The hole-trapping Fermi level of the p-type BiVO4 affords the water splitting devices a shorter path for hole transportation than the n-type BiVO4.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信