Three-Dimensional Nondestructive Characterization of Extrinsic Frank-Type Stacking Faults in 4H-SiC Crystals

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mengda Wang, Mingyang Wei, Yongfu Li, Yan Li, Qingbo Li, Haotian Li, Yanmin Zong and Xian Zhao*, 
{"title":"Three-Dimensional Nondestructive Characterization of Extrinsic Frank-Type Stacking Faults in 4H-SiC Crystals","authors":"Mengda Wang,&nbsp;Mingyang Wei,&nbsp;Yongfu Li,&nbsp;Yan Li,&nbsp;Qingbo Li,&nbsp;Haotian Li,&nbsp;Yanmin Zong and Xian Zhao*,&nbsp;","doi":"10.1021/acs.cgd.4c0063610.1021/acs.cgd.4c00636","DOIUrl":null,"url":null,"abstract":"<p >The luminescence detection technique is one of the most commonly used NDT techniques for detecting stacking faults in 4H-SiC crystals. Commonly used detection methods, such as photoluminescence (PL) and cathodoluminescence (CL), have a relatively shallow detection depth for 4H-SiC crystals. To overcome these shortcomings, in this study, we used two-photon fluorescence microscopy (2PPL) to qualitatively and quantitatively observe the three-dimensional morphology of Frank-type stacking faults for the first time on 4H-SiC crystals. The comparison reveals that the conventional PL and CL cannot accurately detect the complete morphology of stacking faults due to the limitation of the detection depth, nor can they detect the defects of stacking faults existing at a certain depth inside the crystal. The experimental results show that 2PPL can break through the traditional detection depth limitation, and the detection depth of this experiment reaches 130 μm, which is intuitive and accurate for the three-dimensional qualitative and quantitative characterization of the stacking faults on 4H-SiC crystals. We found errors in confocal PL detection of <i>Z</i>-axis depth during the experiments of confocal PL detection and explained the reasons for the errors. This work also analyzes the spatial growth characteristics of the detected Frankish stacking defects.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 24","pages":"10094–10102 10094–10102"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00636","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The luminescence detection technique is one of the most commonly used NDT techniques for detecting stacking faults in 4H-SiC crystals. Commonly used detection methods, such as photoluminescence (PL) and cathodoluminescence (CL), have a relatively shallow detection depth for 4H-SiC crystals. To overcome these shortcomings, in this study, we used two-photon fluorescence microscopy (2PPL) to qualitatively and quantitatively observe the three-dimensional morphology of Frank-type stacking faults for the first time on 4H-SiC crystals. The comparison reveals that the conventional PL and CL cannot accurately detect the complete morphology of stacking faults due to the limitation of the detection depth, nor can they detect the defects of stacking faults existing at a certain depth inside the crystal. The experimental results show that 2PPL can break through the traditional detection depth limitation, and the detection depth of this experiment reaches 130 μm, which is intuitive and accurate for the three-dimensional qualitative and quantitative characterization of the stacking faults on 4H-SiC crystals. We found errors in confocal PL detection of Z-axis depth during the experiments of confocal PL detection and explained the reasons for the errors. This work also analyzes the spatial growth characteristics of the detected Frankish stacking defects.

Abstract Image

4H-SiC晶体中外源frank型层错的三维无损表征
发光检测技术是检测4H-SiC晶体层错最常用的无损检测技术之一。常用的检测方法,如光致发光(PL)和阴极发光(CL),对4H-SiC晶体的检测深度相对较浅。为了克服这些缺点,在本研究中,我们首次使用双光子荧光显微镜(2PPL)对4H-SiC晶体上frank型层错的三维形貌进行了定性和定量观察。对比发现,由于检测深度的限制,传统的PL和CL不能准确地检测到层错的完整形貌,也不能检测到存在于晶体内部一定深度的层错缺陷。实验结果表明,2PPL可以突破传统的检测深度限制,本实验的检测深度达到130 μm,对于4H-SiC晶体层错的三维定性和定量表征直观、准确。在共聚焦光强检测实验中,我们发现了共聚焦光强检测中z轴深度存在误差,并解释了产生误差的原因。本文还分析了检测到的法兰克堆积缺陷的空间生长特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信