Shuang Xu, Dingding Tian, Xiaopeng Liang, Ruishan Wang, Wei Zhu, Shi Hu, Kuankuan Xiong, Zirong Fang, Lin Zhu, Nana Wang* and Jianpu Wang*,
{"title":"Chloride Vapor Annealing for Efficient Deep-Blue Perovskite Light-Emitting Diodes","authors":"Shuang Xu, Dingding Tian, Xiaopeng Liang, Ruishan Wang, Wei Zhu, Shi Hu, Kuankuan Xiong, Zirong Fang, Lin Zhu, Nana Wang* and Jianpu Wang*, ","doi":"10.1021/acs.jpclett.4c0314310.1021/acs.jpclett.4c03143","DOIUrl":null,"url":null,"abstract":"<p >Achieving deep-blue emission is crucial for the practical application of perovskite light-emitting diodes (LEDs) in displays. Increasing the ratio of chlorine to bromine in the perovskite is a facile method to achieve deep-blue emission. However, the low solubility of chloride in the perovskite precursor solution and the low formation energy of defects present challenges that limit device efficiency. Here, we demonstrate a chloride vapor annealing method utilizing ethylammonium chloride (EAC) to enable in situ halide exchange and defect passivation. We find that the chloride ions from EAC can effectively exchange with the bromide ions in the perovskite, resulting in blue-shifted emission. Additionally, the ammonium group in EAC can coordinate with unsaturated lead, reducing trap-assisted nonradiative recombination. Based on this approach, we achieve efficient deep-blue perovskite LEDs with a peak external quantum efficiency of 6.8% and color coordinates of (0.131, 0.044), which fully meet the Rec. 2020 blue standard.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 50","pages":"12435–12440 12435–12440"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03143","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving deep-blue emission is crucial for the practical application of perovskite light-emitting diodes (LEDs) in displays. Increasing the ratio of chlorine to bromine in the perovskite is a facile method to achieve deep-blue emission. However, the low solubility of chloride in the perovskite precursor solution and the low formation energy of defects present challenges that limit device efficiency. Here, we demonstrate a chloride vapor annealing method utilizing ethylammonium chloride (EAC) to enable in situ halide exchange and defect passivation. We find that the chloride ions from EAC can effectively exchange with the bromide ions in the perovskite, resulting in blue-shifted emission. Additionally, the ammonium group in EAC can coordinate with unsaturated lead, reducing trap-assisted nonradiative recombination. Based on this approach, we achieve efficient deep-blue perovskite LEDs with a peak external quantum efficiency of 6.8% and color coordinates of (0.131, 0.044), which fully meet the Rec. 2020 blue standard.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.